BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 37013145)

  • 1. A 3D-printed passive exoskeleton for upper limb assistance in children with motor disorders: proof of concept through an electromyography-based assessment.
    Sanchez C; Blanco L; Del Río C; Urendes E; Costa V; Raya R
    PeerJ; 2023; 11():e15095. PubMed ID: 37013145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of passive upper-limb exoskeletons in reducing musculoskeletal load associated with overhead tasks.
    Kong YK; Kim JH; Shim HH; Shim JW; Park SS; Choi KH
    Appl Ergon; 2023 May; 109():103965. PubMed ID: 36645995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of antigravitational support levels provided by a passive upper-limb occupational exoskeleton in repetitive arm movements.
    Ramella G; Grazi L; Giovacchini F; Trigili E; Vitiello N; Crea S
    Appl Ergon; 2024 May; 117():104226. PubMed ID: 38219374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S
    J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromyography Assessment of the Assistance Provided by an Upper-Limb Exoskeleton in Maintenance Tasks.
    Blanco A; Catalán JM; Díez JA; García JV; Lobato E; García-Aracil N
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheelchair-Mounted Upper Limb Robotic Exoskeleton with Adaptive Controller for Activities of Daily Living.
    Schabron B; Desai J; Yihun Y
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a Passive Upper Limb Exoskeleton in Healthcare Workers during a Surgical Instrument Cleaning Task.
    Arnoux B; Farr A; Boccara V; Vignais N
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Experimental Evaluation of a Semi-Passive Upper-Limb Exoskeleton for Workers With Motorized Tuning of Assistance.
    Grazi L; Trigili E; Proface G; Giovacchini F; Crea S; Vitiello N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2276-2285. PubMed ID: 32755865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.
    Fu J; Choudhury R; Hosseini SM; Simpson R; Park JH
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding Upper-Limb Movement Intention Through Adaptive Dynamic Movement Primitives: A Proof-of-Concept Study with a Shoulder-Elbow Exoskeleton.
    Penna MF; Trigili E; Amato L; Eken H; Dell'Agnello F; Lanotte F; Gruppioni E; Vitiello N; Crea S
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A passive upper-limb exoskeleton reduced muscular loading during augmented reality interactions.
    Kong YK; Park SS; Shim JW; Choi KH; Shim HH; Kia K; Kim JH
    Appl Ergon; 2023 May; 109():103982. PubMed ID: 36739780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing of a 3D printed hand exoskeleton for an individual with stroke: a case study.
    Dudley DR; Knarr BA; Siu KC; Peck J; Ricks B; Zuniga JM
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):209-213. PubMed ID: 31385727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of two upper-limb exoskeletons during overhead work: influence of exoskeleton design and load on muscular adaptations and balance regulation.
    Desbrosses K; Schwartz M; Theurel J
    Eur J Appl Physiol; 2021 Oct; 121(10):2811-2823. PubMed ID: 34173059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An upper-limb power-assist exoskeleton using proportional myoelectric control.
    Tang Z; Zhang K; Sun S; Gao Z; Zhang L; Yang Z
    Sensors (Basel); 2014 Apr; 14(4):6677-94. PubMed ID: 24727501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.