These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37013344)

  • 1. Are synthetic cytology images ready for prime time? A comparative assessment of real and synthetic urine cytology images.
    McAlpine E; Michelow P; Liebenberg E; Celik T
    J Am Soc Cytopathol; 2023; 12(2):126-135. PubMed ID: 37013344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is it real or not? Toward artificial intelligence-based realistic synthetic cytology image generation to augment teaching and quality assurance in pathology.
    McAlpine E; Michelow P; Liebenberg E; Celik T
    J Am Soc Cytopathol; 2022; 11(3):123-132. PubMed ID: 35249862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning detects genetic alterations in cancer histology generated by adversarial networks.
    Krause J; Grabsch HI; Kloor M; Jendrusch M; Echle A; Buelow RD; Boor P; Luedde T; Brinker TJ; Trautwein C; Pearson AT; Quirke P; Jenniskens J; Offermans K; van den Brandt PA; Kather JN
    J Pathol; 2021 May; 254(1):70-79. PubMed ID: 33565124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.
    Chen JS; Coyner AS; Chan RVP; Hartnett ME; Moshfeghi DM; Owen LA; Kalpathy-Cramer J; Chiang MF; Campbell JP
    Ophthalmol Sci; 2021 Dec; 1(4):100079. PubMed ID: 36246951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-pair patch generative adversarial network for data augmentation of focal pathology object detection models.
    Tu E; Burkow J; Tsai A; Junewick J; Perez FA; Otjen J; Alessio AM
    J Med Imaging (Bellingham); 2024 May; 11(3):034505. PubMed ID: 38840982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma.
    Sreejith Kumar AJ; Chong RS; Crowston JG; Chua J; Bujor I; Husain R; Vithana EN; Girard MJA; Ting DSW; Cheng CY; Aung T; Popa-Cherecheanu A; Schmetterer L; Wong D
    JAMA Ophthalmol; 2022 Oct; 140(10):974-981. PubMed ID: 36048435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic Medical Images for Robust, Privacy-Preserving Training of Artificial Intelligence: Application to Retinopathy of Prematurity Diagnosis.
    Coyner AS; Chen JS; Chang K; Singh P; Ostmo S; Chan RVP; Chiang MF; Kalpathy-Cramer J; Campbell JP;
    Ophthalmol Sci; 2022 Jun; 2(2):100126. PubMed ID: 36249693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative Adversarial Networks Can Create High Quality Artificial Prostate Cancer Magnetic Resonance Images.
    Xu IRL; Van Booven DJ; Goberdhan S; Breto A; Porto J; Alhusseini M; Algohary A; Stoyanova R; Punnen S; Mahne A; Arora H
    J Pers Med; 2023 Mar; 13(3):. PubMed ID: 36983728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of diagnostic quality cancer pathology images by generative adversarial networks.
    Levine AB; Peng J; Farnell D; Nursey M; Wang Y; Naso JR; Ren H; Farahani H; Chen C; Chiu D; Talhouk A; Sheffield B; Riazy M; Ip PP; Parra-Herran C; Mills A; Singh N; Tessier-Cloutier B; Salisbury T; Lee J; Salcudean T; Jones SJ; Huntsman DG; Gilks CB; Yip S; Bashashati A
    J Pathol; 2020 Oct; 252(2):178-188. PubMed ID: 32686118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders.
    Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J
    Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Between Generating Noise and Generating Images: Noise in the Correct Frequency Improves the Quality of Synthetic Histopathology Images for Digital Pathology.
    Daniel N; Aknin E; Larey A; Peretz Y; Sela G; Fisher Y; Savir Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-7. PubMed ID: 38083579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.
    Hagiwara A; Otsuka Y; Hori M; Tachibana Y; Yokoyama K; Fujita S; Andica C; Kamagata K; Irie R; Koshino S; Maekawa T; Chougar L; Wada A; Takemura MY; Hattori N; Aoki S
    AJNR Am J Neuroradiol; 2019 Feb; 40(2):224-230. PubMed ID: 30630834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images.
    Cronin NJ; Finni T; Seynnes O
    Comput Methods Programs Biomed; 2020 Nov; 196():105583. PubMed ID: 32544777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan).
    Barrera K; Merino A; Molina A; Rodellar J
    Comput Methods Programs Biomed; 2023 Feb; 229():107314. PubMed ID: 36565666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset.
    Lyra S; Mustafa A; Rixen J; Borik S; Lueken M; Leonhardt S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spine Computed Tomography to Magnetic Resonance Image Synthesis Using Generative Adversarial Networks : A Preliminary Study.
    Lee JH; Han IH; Kim DH; Yu S; Lee IS; Song YS; Joo S; Jin CB; Kim H
    J Korean Neurosurg Soc; 2020 May; 63(3):386-396. PubMed ID: 31931556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generative Adversarial Networks for the Creation of Realistic Artificial Brain Magnetic Resonance Images.
    Kazuhiro K; Werner RA; Toriumi F; Javadi MS; Pomper MG; Solnes LB; Verde F; Higuchi T; Rowe SP
    Tomography; 2018 Dec; 4(4):159-163. PubMed ID: 30588501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.