These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37013410)

  • 1. Confining CO
    Valdés Á; Cabrera-Ramírez A; Prosmiti R
    J Comput Chem; 2023 Jun; 44(17):1587-1598. PubMed ID: 37013410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Stability of the CO
    Cabrera-Ramírez A; Arismendi-Arrieta DJ; Valdés Á; Prosmiti R
    Chemphyschem; 2020 Dec; 21(23):2618-2628. PubMed ID: 33001534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring CO
    Cabrera-Ramírez A; Arismendi-Arrieta DJ; Valdés Á; Prosmiti R
    Chemphyschem; 2021 Feb; 22(4):359-369. PubMed ID: 33368985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Systematic Protocol for Benchmarking Guest-Host Interactions by First-Principles Computations: Capturing CO
    Arismendi-Arrieta DJ; Valdés Á; Prosmiti R
    Chemistry; 2018 Jul; 24(37):9353-9363. PubMed ID: 29600599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO2 inside sI clathrate-like cages: Automated construction of neural network/machine learned guest-host potential and quantum spectra computations.
    Valdés Á; Prosmiti R
    J Chem Phys; 2024 May; 160(18):. PubMed ID: 38726937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational density-functional approaches on finite-size and guest-lattice effects in CO
    Cabrera-Ramírez A; Yanes-Rodríguez R; Prosmiti R
    J Chem Phys; 2021 Jan; 154(4):044301. PubMed ID: 33514100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dynamics of H2, D2, and HD in the small dodecahedral cage of clathrate hydrate: evaluating H2-water nanocage interaction potentials by comparison of theory with inelastic neutron scattering experiments.
    Xu M; Sebastianelli F; Bacić Z
    J Chem Phys; 2008 Jun; 128(24):244715. PubMed ID: 18601373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitating guest transport in clathrate hydrates by tuning guest-host interactions.
    Moudrakovski IL; Udachin KA; Alavi S; Ratcliffe CI; Ripmeester JA
    J Chem Phys; 2015 Feb; 142(7):074705. PubMed ID: 25702022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular dynamics study of ethanol-water hydrogen bonding in binary structure I clathrate hydrate with CO2.
    Alavi S; Ohmura R; Ripmeester JA
    J Chem Phys; 2011 Feb; 134(5):054702. PubMed ID: 21303147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. He Inclusion in Ice-like and Clathrate-like Frameworks: A Benchmark Quantum Chemistry Study of Guest-Host Interactions.
    Yanes-Rodríguez R; Arismendi-Arrieta DJ; Prosmiti R
    J Chem Inf Model; 2020 Jun; 60(6):3043-3056. PubMed ID: 32469514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane molecule confined in the small and large cages of structure I clathrate hydrate: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates.
    Matanović I; Xu M; Moskowitz JW; Eckert J; Bacić Z
    J Chem Phys; 2009 Dec; 131(22):224308. PubMed ID: 20001037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular dynamics study of guest-host hydrogen bonding in alcohol clathrate hydrates.
    Hiratsuka M; Ohmura R; Sum AK; Alavi S; Yasuoka K
    Phys Chem Chem Phys; 2015 May; 17(19):12639-47. PubMed ID: 25905113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct space methods for powder X-ray diffraction for guest-host materials: applications to cage occupancies and guest distributions in clathrate hydrates.
    Takeya S; Udachin KA; Moudrakovski IL; Susilo R; Ripmeester JA
    J Am Chem Soc; 2010 Jan; 132(2):524-31. PubMed ID: 20000734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular dynamics study of model SI clathrate hydrates: the effect of guest size and guest-water interaction on decomposition kinetics.
    Das S; Baghel VS; Roy S; Kumar R
    Phys Chem Chem Phys; 2015 Apr; 17(14):9509-18. PubMed ID: 25767053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.
    Alavi S; Ohmura R
    J Chem Phys; 2016 Oct; 145(15):154708. PubMed ID: 27782458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the CO₂ Guest Molecule on the sI Clathrate Hydrate Structure.
    Izquierdo-Ruiz F; Otero-de-la-Roza A; Contreras-García J; Prieto-Ballesteros O; Recio JM
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO
    Longone P; Martín Á; Ramirez-Pastor AJ
    J Phys Chem B; 2022 Feb; 126(4):878-889. PubMed ID: 35076244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of the Condensed-Phase Environment on the Translation-Rotation Eigenstates and Spectra of a Hydrogen Molecule in Clathrate Hydrates.
    Powers A; Marsalek O; Xu M; Ulivi L; Colognesi D; Tuckerman ME; Bačić Z
    J Phys Chem Lett; 2016 Jan; 7(2):308-13. PubMed ID: 26727217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal expansivity of tetrahydrofuran clathrate hydrate with diatomic guest molecules.
    Park Y; Choi YN; Yeon SH; Lee H
    J Phys Chem B; 2008 Jun; 112(23):6897-9. PubMed ID: 18489143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delving into guest-free and He-filled sI and sII clathrate hydrates: a first-principles computational study.
    Yanes-Rodríguez R; Cabrera-Ramírez A; Prosmiti R
    Phys Chem Chem Phys; 2022 Jun; 24(21):13119-13129. PubMed ID: 35587105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.