These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 37013698)
1. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model. González-Lana S; Randelovic T; Ciriza J; López-Valdeolivas M; Monge R; Sánchez-Somolinos C; Ochoa I Lab Chip; 2023 May; 23(10):2434-2446. PubMed ID: 37013698 [TBL] [Abstract][Full Text] [Related]
2. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel. Jeong GS; Kwon GH; Kang AR; Jung BY; Park Y; Chung S; Lee SH Biomed Microdevices; 2011 Aug; 13(4):717-23. PubMed ID: 21494794 [TBL] [Abstract][Full Text] [Related]
4. Polydopamine-Based Interfacial Engineering of Extracellular Matrix Hydrogels for the Construction and Long-Term Maintenance of Living Three-Dimensional Tissues. Park SE; Georgescu A; Oh JM; Kwon KW; Huh D ACS Appl Mater Interfaces; 2019 Jul; 11(27):23919-23925. PubMed ID: 31199616 [TBL] [Abstract][Full Text] [Related]
5. Photo-crosslinkable hydrogel-based 3D microfluidic culture device. Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332 [TBL] [Abstract][Full Text] [Related]
6. A web-based application for automated quantification of chemical gradients induced in microfluidic devices. Cóndor M; Rüberg T; Borau C; Piles J; García-Aznar JM Comput Biol Med; 2018 Apr; 95():118-128. PubMed ID: 29494849 [TBL] [Abstract][Full Text] [Related]
7. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). Alessandri K; Feyeux M; Gurchenkov B; Delgado C; Trushko A; Krause KH; Vignjević D; Nassoy P; Roux A Lab Chip; 2016 Apr; 16(9):1593-604. PubMed ID: 27025278 [TBL] [Abstract][Full Text] [Related]
8. Tuneable hydrogel patterns in pillarless microfluidic devices. Olaizola-Rodrigo C; Palma-Florez S; Ranđelović T; Bayona C; Ashrafi M; Samitier J; Lagunas A; Mir M; Doblaré M; Ochoa I; Monge R; Oliván S Lab Chip; 2024 Mar; 24(7):2094-2106. PubMed ID: 38444329 [TBL] [Abstract][Full Text] [Related]
9. Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass. Wang S; Mao S; Li M; Li HF; Lin JM Talanta; 2019 Jan; 191():67-73. PubMed ID: 30262100 [TBL] [Abstract][Full Text] [Related]
10. Integrated electrochemical measurement of endothelial permeability in a 3D hydrogel-based microfluidic vascular model. Wong JF; Mohan MD; Young EWK; Simmons CA Biosens Bioelectron; 2020 Jan; 147():111757. PubMed ID: 31654819 [TBL] [Abstract][Full Text] [Related]
11. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Del Amo C; Borau C; Movilla N; Asín J; García-Aznar JM Integr Biol (Camb); 2017 Apr; 9(4):339-349. PubMed ID: 28300261 [TBL] [Abstract][Full Text] [Related]
12. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Kuo KC; Lin RZ; Tien HW; Wu PY; Li YC; Melero-Martin JM; Chen YC Acta Biomater; 2015 Nov; 27():151-166. PubMed ID: 26348142 [TBL] [Abstract][Full Text] [Related]
13. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Taubenberger AV; Bray LJ; Haller B; Shaposhnykov A; Binner M; Freudenberg U; Guck J; Werner C Acta Biomater; 2016 May; 36():73-85. PubMed ID: 26971667 [TBL] [Abstract][Full Text] [Related]
14. Biocompatibility-on-a-chip: Characterization and evaluation of decellularized tendon extracellular matrix (tdECM) hydrogel for 3D stem cell culture in a microfluidic device. Bhatt A; Dhiman N; Giri PS; Kasinathan GN; Pati F; Rath SN Int J Biol Macromol; 2022 Jul; 213():768-779. PubMed ID: 35688274 [TBL] [Abstract][Full Text] [Related]
15. Hydrogels as artificial matrices for cell seeding in microfluidic devices. Akther F; Little P; Li Z; Nguyen NT; Ta HT RSC Adv; 2020 Nov; 10(71):43682-43703. PubMed ID: 35519701 [TBL] [Abstract][Full Text] [Related]
17. Construction of 3D multicellular microfluidic chip for an in vitro skin model. Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277 [TBL] [Abstract][Full Text] [Related]
18. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms. Vera D; García-Díaz M; Torras N; Álvarez M; Villa R; Martinez E ACS Appl Mater Interfaces; 2021 Mar; 13(12):13920-13933. PubMed ID: 33739812 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of 3D Biomimetic Microfluidic Networks in Hydrogels. Heintz KA; Bregenzer ME; Mantle JL; Lee KH; West JL; Slater JH Adv Healthc Mater; 2016 Sep; 5(17):2153-60. PubMed ID: 27239785 [TBL] [Abstract][Full Text] [Related]
20. Hydrogel-based microfluidic systems for co-culture of cells. Chen MC; Gupta M; Cheung KC Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4848-51. PubMed ID: 19163802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]