These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 37013698)
21. Study 3D Endothelial Cell Network Formation under Various Oxygen Microenvironment and Hydrogel Composition Combinations Using Upside-Down Microfluidic Devices. Hsu HH; Ko PL; Wu HM; Lin HC; Wang CK; Tung YC Small; 2021 Apr; 17(15):e2006091. PubMed ID: 33480473 [TBL] [Abstract][Full Text] [Related]
22. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions. Humayun M; Chow CW; Young EWK Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473 [TBL] [Abstract][Full Text] [Related]
23. Tumor Microenvironment Based on Extracellular Matrix Hydrogels for On-Chip Drug Screening. Liu X; Cheng J; Zhao Y Biosensors (Basel); 2024 Sep; 14(9):. PubMed ID: 39329804 [TBL] [Abstract][Full Text] [Related]
24. Patterning Biological Gels for 3D Cell Culture inside Microfluidic Devices by Local Surface Modification through Laminar Flow Patterning. Loessberg-Zahl J; Beumer J; van den Berg A; Eijkel JCT; van der Meer AD Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33339092 [TBL] [Abstract][Full Text] [Related]
25. Development of Multi-Dimensional Cell Co-Culture via a Novel Microfluidic Chip Fabricated by DMD-Based Optical Projection Lithography. Ge Z; Yu H; Yang W; Yang J; Liu B; Wang X; Liu Z; Liu L IEEE Trans Nanobioscience; 2019 Oct; 18(4):679-686. PubMed ID: 31514145 [TBL] [Abstract][Full Text] [Related]
26. Layer-by-layer fabrication of 3D hydrogel structures using open microfluidics. Lee UN; Day JH; Haack AJ; Bretherton RC; Lu W; DeForest CA; Theberge AB; Berthier E Lab Chip; 2020 Feb; 20(3):525-536. PubMed ID: 31915779 [TBL] [Abstract][Full Text] [Related]
27. Degradation of extracellular matrix regulates osteoblast migration: A microfluidic-based study. Movilla N; Borau C; Valero C; García-Aznar JM Bone; 2018 Feb; 107():10-17. PubMed ID: 29107125 [TBL] [Abstract][Full Text] [Related]
28. A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage. Jiménez G; Venkateswaran S; López-Ruiz E; Perán M; Pernagallo S; Díaz-Monchón JJ; Canadas RF; Antich C; Oliveira JM; Callanan A; Walllace R; Reis RL; Montañez E; Carrillo E; Bradley M; Marchal JA Acta Biomater; 2019 May; 90():146-156. PubMed ID: 30910621 [TBL] [Abstract][Full Text] [Related]
29. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
31. Flow focusing through gels as a tool to generate 3D concentration profiles in hydrogel-filled microfluidic chips. Loessberg-Zahl J; van der Meer AD; van den Berg A; Eijkel JCT Lab Chip; 2019 Jan; 19(2):206-213. PubMed ID: 30548051 [TBL] [Abstract][Full Text] [Related]
32. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array. Su C; Chuah YJ; Ong HB; Tay HM; Dalan R; Hou HW Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940266 [TBL] [Abstract][Full Text] [Related]
33. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel. Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485 [TBL] [Abstract][Full Text] [Related]
34. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Bott K; Upton Z; Schrobback K; Ehrbar M; Hubbell JA; Lutolf MP; Rizzi SC Biomaterials; 2010 Nov; 31(32):8454-64. PubMed ID: 20684983 [TBL] [Abstract][Full Text] [Related]
35. Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials. Song H; Cai GH; Liang J; Ao DS; Wang H; Yang ZH J Nanobiotechnology; 2020 Jun; 18(1):90. PubMed ID: 32527266 [TBL] [Abstract][Full Text] [Related]
36. Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models. Zirath H; Rothbauer M; Spitz S; Bachmann B; Jordan C; Müller B; Ehgartner J; Priglinger E; Mühleder S; Redl H; Holnthoner W; Harasek M; Mayr T; Ertl P Front Physiol; 2018; 9():815. PubMed ID: 30018569 [TBL] [Abstract][Full Text] [Related]
37. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold. Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441 [TBL] [Abstract][Full Text] [Related]
38. Quantitative analysis of fibrillar collagen organization in the immediate proximity of embedded fibroblasts in 3D collagen hydrogels. Kanade S; Desai M; Bhatavadekar N; Balasubramanian N J Biosci; 2024; 49():. PubMed ID: 38920105 [TBL] [Abstract][Full Text] [Related]
39. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization. McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274 [TBL] [Abstract][Full Text] [Related]
40. Engineering a dynamic three-dimensional cell culturing microenvironment using a 'sandwich' structure-liked microfluidic device with 3D printing scaffold. Ding L; Liu C; Yin S; Zhou Z; Chen J; Chen X; Chen L; Wang D; Liu B; Liu Y; Wei J; Li J Biofabrication; 2022 Sep; 14(4):. PubMed ID: 35973411 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]