These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37013801)

  • 1. From rectangular to diamond shape: on the three-dimensional and size-dependent transformation of patterns formed by single particles trapped in microfluidic acoustic tweezers.
    Deng Z; Kondalkar VV; Cierpka C; Schmidt H; König J
    Lab Chip; 2023 May; 23(9):2154-2160. PubMed ID: 37013801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of polymer-shelled microbubble motions in acoustophoresis.
    Kothapalli SV; Wiklund M; Janerot-Sjoberg B; Paradossi G; Grishenkov D
    Ultrasonics; 2016 Aug; 70():275-83. PubMed ID: 27261567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part II.
    Sachs S; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2028-2040. PubMed ID: 35485185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase separation of a nonionic surfactant aqueous solution in a standing surface acoustic wave for submicron particle manipulation.
    Zhao L; Niu P; Casals E; Zeng M; Wu C; Yang Y; Sun S; Zheng Z; Wang Z; Ning Y; Duan X; Pang W
    Lab Chip; 2021 Feb; 21(4):660-667. PubMed ID: 33393566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect.
    Lee J; Jeong JS; Shung KK
    Ultrasonics; 2013 Jan; 53(1):249-54. PubMed ID: 22824623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of acoustic trapping capability on the orientation and shape of particles.
    Liu Y; Hu J; Zhao C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1443-50. PubMed ID: 20529719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential-well model in acoustic tweezers.
    Kang ST; Yeh CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1451-9. PubMed ID: 20529720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.
    Bernassau AL; Glynne-Jones P; Gesellchen F; Riehle M; Hill M; Cumming DR
    Ultrasonics; 2014 Jan; 54(1):268-74. PubMed ID: 23725599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces.
    Lei J
    Microfluid Nanofluidics; 2017; 21(3):50. PubMed ID: 32226357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized potential theory for close-range acoustic interactions in the Rayleigh limit.
    Sepehrirhnama S; Lim KM
    Phys Rev E; 2020 Oct; 102(4-1):043307. PubMed ID: 33212642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Willis Coupling-Induced Acoustic Radiation Force and Torque Reversal.
    Sepehrirahnama S; Oberst S; Chiang YK; Powell DA
    Phys Rev Lett; 2022 Oct; 129(17):174501. PubMed ID: 36332239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.