These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 37013906)
1. Spatial heterogeneity of global forest aboveground carbon stocks and fluxes constrained by spaceborne lidar data and mechanistic modeling. Ma L; Hurtt G; Tang H; Lamb R; Lister A; Chini L; Dubayah R; Armston J; Campbell E; Duncanson L; Healey S; O'Neil-Dunne J; Ott L; Poulter B; Shen Q Glob Chang Biol; 2023 Jun; 29(12):3378-3394. PubMed ID: 37013906 [TBL] [Abstract][Full Text] [Related]
2. Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function. Antonarakis AS; Saatchi SS; Chazdon RL; Moorcroft PR Ecol Appl; 2011 Jun; 21(4):1120-37. PubMed ID: 21774418 [TBL] [Abstract][Full Text] [Related]
3. Comparison of forest stand height interpolation of GEDI and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India. Musthafa M; Singh G; Kumar P Environ Monit Assess; 2022 Nov; 195(1):71. PubMed ID: 36331684 [TBL] [Abstract][Full Text] [Related]
4. Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods. Raciti SM; Hutyra LR; Newell JD Sci Total Environ; 2014 Dec; 500-501():72-83. PubMed ID: 25217746 [TBL] [Abstract][Full Text] [Related]
5. Persistent effects of fragmentation on tropical rainforest canopy structure after 20 yr of isolation. Almeida DRA; Stark SC; Schietti J; Camargo JLC; Amazonas NT; Gorgens EB; Rosa DM; Smith MN; Valbuena R; Saleska S; Andrade A; Mesquita R; Laurance SG; Laurance WF; Lovejoy TE; Broadbent EN; Shimabukuro YE; Parker GG; Lefsky M; Silva CA; Brancalion PHS Ecol Appl; 2019 Sep; 29(6):e01952. PubMed ID: 31206818 [TBL] [Abstract][Full Text] [Related]
6. Integrating spaceborne LiDAR and Sentinel-2 images to estimate forest aboveground biomass in Northern China. Jiang F; Deng M; Tang J; Fu L; Sun H Carbon Balance Manag; 2022 Sep; 17(1):12. PubMed ID: 36048352 [TBL] [Abstract][Full Text] [Related]
7. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing. Hakkenberg CR; Zhu K; Peet RK; Song C Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965 [TBL] [Abstract][Full Text] [Related]
8. An integrated remote sensing and model approach for assessing forest carbon fluxes in China. Zhao J; Liu D; Cao Y; Zhang L; Peng H; Wang K; Xie H; Wang C Sci Total Environ; 2022 Mar; 811():152480. PubMed ID: 34923008 [TBL] [Abstract][Full Text] [Related]
9. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA. Griffith KT; Ponette-González AG; Curran LM; Weathers KC Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759 [TBL] [Abstract][Full Text] [Related]
11. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing. Fricker GA; Wolf JA; Saatchi SS; Gillespie TW Ecol Appl; 2015 Oct; 25(7):1776-89. PubMed ID: 26591445 [TBL] [Abstract][Full Text] [Related]
12. Characterizing forest structure variations across an intact tropical peat dome using field samplings and airborne LiDAR. Nguyen HT; Hutyra LR; Hardiman BS; Raciti SM Ecol Appl; 2016 Mar; 26(2):587-601. PubMed ID: 27209797 [TBL] [Abstract][Full Text] [Related]
13. Amazonian landscapes and the bias in field studies of forest structure and biomass. Marvin DC; Asner GP; Knapp DE; Anderson CB; Martin RE; Sinca F; Tupayachi R Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5224-32. PubMed ID: 25422434 [TBL] [Abstract][Full Text] [Related]
14. Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach. Kamoske AG; Dahlin KM; Serbin SP; Stark SC Ecol Appl; 2021 Mar; 31(2):e02230. PubMed ID: 33015908 [TBL] [Abstract][Full Text] [Related]
16. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. Montesano PM; Neigh C; Sun G; Duncanson L; Hoek JVD; Jon Ranson K Remote Sens Environ; 2017 Jul; 196():76-88. PubMed ID: 32848282 [TBL] [Abstract][Full Text] [Related]
17. Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar. Bolton DK; Coops NC; Wulder MA Environ Monit Assess; 2013 Aug; 185(8):6617-34. PubMed ID: 23291915 [TBL] [Abstract][Full Text] [Related]
18. Accounting for disturbance history in models: using remote sensing to constrain carbon and nitrogen pool spin-up. Hanan EJ; Tague C; Choate J; Liu M; Kolden C; Adam J Ecol Appl; 2018 Jul; 28(5):1197-1214. PubMed ID: 29573305 [TBL] [Abstract][Full Text] [Related]
19. ForC: a global database of forest carbon stocks and fluxes. Anderson-Teixeira KJ; Wang MMH; McGarvey JC; Herrmann V; Tepley AJ; Bond-Lamberty B; LeBauer DS Ecology; 2018 Jun; 99(6):1507. PubMed ID: 29603730 [TBL] [Abstract][Full Text] [Related]
20. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+. Leitold V; Keller M; Morton DC; Cook BD; Shimabukuro YE Carbon Balance Manag; 2015 Dec; 10(1):3. PubMed ID: 25685178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]