These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 3701401)

  • 1. Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus.
    Skorupski P; Sillar KT
    J Neurophysiol; 1986 Apr; 55(4):689-95. PubMed ID: 3701401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia.
    Sillar KT; Skorupski P
    J Neurophysiol; 1986 Apr; 55(4):678-88. PubMed ID: 3701400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Octopamine induces steady-state reflex reversal in crayfish thoracic ganglia.
    Skorupski P
    J Neurophysiol; 1996 Jul; 76(1):93-108. PubMed ID: 8836212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity and central modulation of feedback reflexes in crayfish motor pool.
    Skorupski P; Rawat BM; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):648-63. PubMed ID: 1578250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identified proprioceptive afferents and motor rhythm entrainment in the crayfish walking system.
    Elson RC; Sillar KT; Bush BM
    J Neurophysiol; 1992 Mar; 67(3):530-46. PubMed ID: 1578243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel reflex and central control of promotor and receptor motoneurons in crayfish.
    Skorupski P; Bush BM
    Proc Biol Sci; 1992 Jul; 249(1324):7-12. PubMed ID: 1359550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic connections between nonspiking afferent neurons and motor neurons underlying phase-dependent reflexes in crayfish.
    Skorupski P
    J Neurophysiol; 1992 Mar; 67(3):664-79. PubMed ID: 1315846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of spontaneous and reflex activity of crayfish leg motor neurons by octopamine and serotonin.
    Gill MD; Skorupski P
    J Neurophysiol; 1996 Nov; 76(5):3535-49. PubMed ID: 8930291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. INTEGRATION OF POSITIVE AND NEGATIVE FEEDBACK LOOPS IN A CRAYFISH MUSCLE.
    Skorupski P; Vescovi P; Bush B
    J Exp Biol; 1994 Feb; 187(1):305-13. PubMed ID: 9317858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanisms of reflex reversal in coxo-basipodite depressor motor neurons of the crayfish.
    Le Ray D; Cattaert D
    J Neurophysiol; 1997 Apr; 77(4):1963-78. PubMed ID: 9114248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. II. Integration Of sensory inputs in motor neurons.
    Le Ray D; Clarac F; Cattaert D
    J Neurophysiol; 1997 Dec; 78(6):3144-53. PubMed ID: 9405534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of sensory feedback on crayfish posture and locomotion: I. Experimental analysis of closing the loop.
    Chung B; Bacqué-Cazenave J; Cofer DW; Cattaert D; Edwards DH
    J Neurophysiol; 2015 Mar; 113(6):1763-71. PubMed ID: 25540217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop.
    Bacqué-Cazenave J; Chung B; Cofer DW; Cattaert D; Edwards DH
    J Neurophysiol; 2015 Mar; 113(6):1772-83. PubMed ID: 25552643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of motor activity in crayfish by the steroid hormone 20-hydroxyecdysone via motoneuron excitability and sensory-motor integration.
    Bacqué-Cazenave J; Bouvet F; Fossat P; Cattaert D; Delbecque JP
    J Exp Biol; 2013 May; 216(Pt 10):1808-18. PubMed ID: 23393273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflex actions of one proprioceptor on the motoneurones of a muscle receptor and their central modulation in the shore crab.
    Head SI; Bush BM
    J Physiol; 1991 Jun; 437():49-62. PubMed ID: 1890645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monosynaptic Interjoint Reflexes and their Central Modulation During Fictive Locomotion in Crayfish.
    El Manira A; DiCaprio RA; Cattaert D; Clarac F
    Eur J Neurosci; 1991; 3(12):1219-1231. PubMed ID: 12106221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending control of nonspiking local interneurons in the terminal abdominal ganglion of the crayfish.
    Namba H; Nagayama T; Hisada M
    J Neurophysiol; 1994 Jul; 72(1):235-47. PubMed ID: 7965008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+- and Sr2+-activation properties of muscle fibres from a muscle receptor organ and the associated extrafusal muscle of the crab and crayfish.
    Parkinson AL; Bakker AJ; Head SI
    J Muscle Res Cell Motil; 2000; 21(7):663-71. PubMed ID: 11227793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of the sensory motor pathway of resistance reflex in crayfish. I. Multisensory coding and motor neuron monosynaptic responses.
    Le Ray D; Clarac F; Cattaert D
    J Neurophysiol; 1997 Dec; 78(6):3133-43. PubMed ID: 9405533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinergic control of the walking network in the crayfish Procambarus clarkii.
    Cattaert D; Pearlstein E; Clarac F
    J Physiol Paris; 1995; 89(4-6):209-20. PubMed ID: 8861819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.