These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37014205)

  • 1. Unveiling the Role of Hidden Isomers in Large Stokes Shift in mKeima: Harnessing pH-Sensitive Dual-Emission in Bioimaging.
    Bhutani G; Verma P; Jayachandran A; Paul S; Chattopadhyay K; De AK
    J Phys Chem B; 2023 Apr; 127(14):3197-3207. PubMed ID: 37014205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating photocycle in large Stokes shift red fluorescent proteins: Focus on mKeima.
    Bhutani G; Verma P; Paul S; Dhamija S; Chattopadhyay K; De AK
    Photochem Photobiol; 2024; 100(4):897-909. PubMed ID: 38752609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the Complete Photocycle that Powers a Large Stokes Shift Red Fluorescent Protein.
    Wang Z; Zhang Y; Chen C; Zhu R; Jiang J; Weng TC; Ji Q; Huang Y; Fang C; Liu W
    Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202212209. PubMed ID: 36440527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excited state proton transfer in the red fluorescent protein mKeima.
    Henderson JN; Osborn MF; Koon N; Gepshtein R; Huppert D; Remington SJ
    J Am Chem Soc; 2009 Sep; 131(37):13212-3. PubMed ID: 19708654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima.
    Violot S; Carpentier P; Blanchoin L; Bourgeois D
    J Am Chem Soc; 2009 Aug; 131(30):10356-7. PubMed ID: 19722611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift.
    Piatkevich KD; Malashkevich VN; Almo SC; Verkhusha VV
    J Am Chem Soc; 2010 Aug; 132(31):10762-70. PubMed ID: 20681709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application.
    Hanson GT; McAnaney TB; Park ES; Rendell ME; Yarbrough DK; Chu S; Xi L; Boxer SG; Montrose MH; Remington SJ
    Biochemistry; 2002 Dec; 41(52):15477-88. PubMed ID: 12501176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysics of the red chromophore of HcRed: evidence for cis-trans isomerization and protonation-state changes.
    Mudalige K; Habuchi S; Goodwin PM; Pai RK; De Schryver F; Cotlet M
    J Phys Chem B; 2010 Apr; 114(13):4678-85. PubMed ID: 20230057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural basis for reversible photoswitching of absorbance spectra in red fluorescent protein rsTagRFP.
    Pletnev S; Subach FV; Dauter Z; Wlodawer A; Verkhusha VV
    J Mol Biol; 2012 Mar; 417(3):144-51. PubMed ID: 22310052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual emitting states of the kindling fluorescent protein: appearance of the cationic chromophore in the GFP family.
    Grigorenko BL; Polyakov IV; Savitsky AP; Nemukhin AV
    J Phys Chem B; 2013 Jun; 117(24):7228-34. PubMed ID: 23697758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excited-State Intramolecular Proton Transfer in a Blue Fluorescence Chromophore Induces Dual Emission.
    Wu D; Guo WW; Liu XY; Cui G
    Chemphyschem; 2016 Aug; 17(15):2340-7. PubMed ID: 27128380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delineating Ultrafast Structural Dynamics of a Green-Red Fluorescent Protein for Calcium Sensing.
    Krueger TD; Tang L; Fang C
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36831983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Stokes shift in green fluorescent protein variants.
    Abbyad P; Childs W; Shi X; Boxer SG
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20189-94. PubMed ID: 18077381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore.
    Hsieh CC; Chou PT; Shih CW; Chuang WT; Chung MW; Lee J; Joo T
    J Am Chem Soc; 2011 Mar; 133(9):2932-43. PubMed ID: 21323314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary light-induced reaction steps of reversibly photoswitchable fluorescent protein Padron0.9 investigated by femtosecond spectroscopy.
    Walter A; Andresen M; Jakobs S; Schroeder J; Schwarzer D
    J Phys Chem B; 2015 Apr; 119(16):5136-44. PubMed ID: 25802098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins.
    Krueger TD; Chen C; Fang C
    Chem Asian J; 2023 Oct; 18(20):e202300668. PubMed ID: 37682793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green fluorescent protein variants as ratiometric dual emission pH sensors. 3. Temperature dependence of proton transfer.
    McAnaney TB; Shi X; Abbyad P; Jung H; Remington SJ; Boxer SG
    Biochemistry; 2005 Jun; 44(24):8701-11. PubMed ID: 15952777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics.
    McAnaney TB; Park ES; Hanson GT; Remington SJ; Boxer SG
    Biochemistry; 2002 Dec; 41(52):15489-94. PubMed ID: 12501177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast Dynamics of a Green Fluorescent Protein Chromophore Analogue: Competition between Excited-State Proton Transfer and Torsional Relaxation.
    Chatterjee T; Lacombat F; Yadav D; Mandal M; Plaza P; Espagne A; Mandal PK
    J Phys Chem B; 2016 Sep; 120(36):9716-22. PubMed ID: 27548114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.