These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37014319)
1. Tsanaktsidou E; Krestenitis M; Karavasili C; Zacharis CK; Fatouros DG; Markopoulou CK Drug Dev Ind Pharm; 2023 Mar; 49(3):249-259. PubMed ID: 37014319 [TBL] [Abstract][Full Text] [Related]
2. Application of in vitro PAMPA technique and in silico computational methods for blood-brain barrier permeability prediction of novel CNS drug candidates. Radan M; Djikic T; Obradovic D; Nikolic K Eur J Pharm Sci; 2022 Jan; 168():106056. PubMed ID: 34740787 [TBL] [Abstract][Full Text] [Related]
3. Partial Least Square Model (PLS) as a Tool to Predict the Diffusion of Steroids Across Artificial Membranes. Tsanaktsidou E; Karavasili C; Zacharis CK; Fatouros DG; Markopoulou CK Molecules; 2020 Mar; 25(6):. PubMed ID: 32197506 [TBL] [Abstract][Full Text] [Related]
4. In silico model of drug permeability across sublingual mucosa. Goswami T; Kokate A; Jasti BR; Li X Arch Oral Biol; 2013 May; 58(5):545-51. PubMed ID: 23123066 [TBL] [Abstract][Full Text] [Related]
5. Prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands using PAMPA technique and quantitative-structure permeability relationship analysis. Vucicevic J; Nikolic K; Dobričić V; Agbaba D Eur J Pharm Sci; 2015 Feb; 68():94-105. PubMed ID: 25542610 [TBL] [Abstract][Full Text] [Related]
6. A Comparative Study and Prediction of the Ex Vivo Permeation of Six Vaginally Administered Drugs across Five Artificial Membranes and Vaginal Tissue. Tsanaktsidou E; Chatzitaki AT; Chatzichristou A; Fatouros DG; Markopoulou CK Molecules; 2024 May; 29(10):. PubMed ID: 38792194 [TBL] [Abstract][Full Text] [Related]
7. Exploring 3D-QSPR models of human skin permeability for a diverse dataset of chemical compounds. Rezaei S; Behnejad H; Shiri F; Ghasemi JB J Recept Signal Transduct Res; 2019; 39(5-6):442-450. PubMed ID: 31766932 [TBL] [Abstract][Full Text] [Related]
8. A corneal-PAMPA-based in silico model for predicting corneal permeability. Vincze A; Dargó G; Rácz A; Balogh GT J Pharm Biomed Anal; 2021 Sep; 203():114218. PubMed ID: 34166924 [TBL] [Abstract][Full Text] [Related]
9. In Silico Prediction of PAMPA Effective Permeability Using a Two-QSAR Approach. Chi CT; Lee MH; Weng CF; Leong MK Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261723 [TBL] [Abstract][Full Text] [Related]
10. Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Golmohammadi H; Dashtbozorgi Z; Acree WE Eur J Pharm Sci; 2012 Sep; 47(2):421-9. PubMed ID: 22771548 [TBL] [Abstract][Full Text] [Related]
11. ADME Properties Evaluation in Drug Discovery: Prediction of Caco-2 Cell Permeability Using a Combination of NSGA-II and Boosting. Wang NN; Dong J; Deng YH; Zhu MF; Wen M; Yao ZJ; Lu AP; Wang JB; Cao DS J Chem Inf Model; 2016 Apr; 56(4):763-73. PubMed ID: 27018227 [TBL] [Abstract][Full Text] [Related]
12. Partial least square and hierarchical clustering in ADMET modeling: prediction of blood-brain barrier permeation of α-adrenergic and imidazoline receptor ligands. Nikolic K; Filipic S; Smoliński A; Kaliszan R; Agbaba D J Pharm Pharm Sci; 2013; 16(4):622-47. PubMed ID: 24210068 [TBL] [Abstract][Full Text] [Related]
13. Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method. Yamashita F; Wanchana S; Hashida M J Pharm Sci; 2002 Oct; 91(10):2230-9. PubMed ID: 12226850 [TBL] [Abstract][Full Text] [Related]
14. Predicting Passive Permeability of Drug-like Molecules from Chemical Structure: Where Are We? Broccatelli F; Salphati L; Plise E; Cheong J; Gobbi A; Lee ML; Aliagas I Mol Pharm; 2016 Dec; 13(12):4199-4208. PubMed ID: 27806577 [TBL] [Abstract][Full Text] [Related]
15. Extending the limitations in the prediction of PAMPA permeability with machine learning algorithms. Rácz A; Vincze A; Volk B; Balogh GT Eur J Pharm Sci; 2023 Sep; 188():106514. PubMed ID: 37402429 [TBL] [Abstract][Full Text] [Related]
16. A Machine Learning Approach for Predicting Caco-2 Cell Permeability in Natural Products from the Biodiversity in Peru. Acuña-Guzman V; Montoya-Alfaro ME; Negrón-Ballarte LP; Solis-Calero C Pharmaceuticals (Basel); 2024 Jun; 17(6):. PubMed ID: 38931417 [TBL] [Abstract][Full Text] [Related]
17. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464 [TBL] [Abstract][Full Text] [Related]
18. Correlation between the structure and skin permeability of compounds. Zeng R; Deng J; Dang L; Yu X Sci Rep; 2021 May; 11(1):10076. PubMed ID: 33980965 [TBL] [Abstract][Full Text] [Related]
19. In silico prediction of drug permeability across buccal mucosa. Kokate A; Li X; Williams PJ; Singh P; Jasti BR Pharm Res; 2009 May; 26(5):1130-9. PubMed ID: 19184372 [TBL] [Abstract][Full Text] [Related]
20. Absorption classification of oral drugs based on molecular surface properties. Bergström CA; Strafford M; Lazorova L; Avdeef A; Luthman K; Artursson P J Med Chem; 2003 Feb; 46(4):558-70. PubMed ID: 12570377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]