These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37014632)

  • 1. Atomic Insights into the Cu Species Supported on Zeolite for Direct Oxidation of Methane to Methanol via Low-Damage HAADF-STEM.
    Tang X; Ye J; Guo L; Pu T; Cheng L; Cao XM; Guo Y; Wang L; Guo Y; Zhan W; Dai S
    Adv Mater; 2023 Jun; 35(25):e2208504. PubMed ID: 37014632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise Confinement and Position Distribution of Atomic Cu and Zn in ZSM-5 for CO
    Ding H; Zhang J; Feng W; Yao Q; Zhang L; Ren Y; Ye L; Yue B; He H
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tutorial: structural characterization of isolated metal atoms and subnanometric metal clusters in zeolites.
    Liu L; Lopez-Haro M; Calvino JJ; Corma A
    Nat Protoc; 2021 Apr; 16(4):1871-1906. PubMed ID: 32887974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Insights into Cu-Based Catalytic Sites for the Direct Conversion of Methane to Methanol.
    Mao M; Liu L; Liu Z
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36363972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods.
    Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG
    Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts.
    Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K
    Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Direct Conversion of Methane to Methanol Over Copper-Exchanged Zeolites.
    Park MB; Park ED; Ahn WS
    Front Chem; 2019; 7():514. PubMed ID: 31380355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies.
    Wijerathne A; Sawyer A; Daya R; Paolucci C
    JACS Au; 2024 Jan; 4(1):197-215. PubMed ID: 38274255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol.
    Woertink JS; Smeets PJ; Groothaert MH; Vance MA; Sels BF; Schoonheydt RA; Solomon EI
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18908-13. PubMed ID: 19864626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct imaging of local atomic structures in zeolite using optimum bright-field scanning transmission electron microscopy.
    Ooe K; Seki T; Yoshida K; Kohno Y; Ikuhara Y; Shibata N
    Sci Adv; 2023 Aug; 9(31):eadf6865. PubMed ID: 37531431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Oxidation of Methane to Methanol over Transition-Metal-Free Ferrierite Zeolite Catalysts.
    Xiao P; Wang Y; Lu Y; Nakamura K; Ozawa N; Kubo M; Gies H; Yokoi T
    J Am Chem Soc; 2024 Apr; 146(14):10014-10022. PubMed ID: 38557129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data science assisted investigation of catalytically active copper hydrate in zeolites for direct oxidation of methane to methanol using H
    Ohyama J; Hirayama A; Kondou N; Yoshida H; Machida M; Nishimura S; Hirai K; Miyazato I; Takahashi K
    Sci Rep; 2021 Jan; 11(1):2067. PubMed ID: 33483547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeolite-Encapsulated Ultrasmall Cu/ZnO
    Cui WG; Li YT; Yu L; Zhang H; Hu TL
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18693-18703. PubMed ID: 33852283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metals-incorporated zeolites as environmental catalysts for indoor air ozone decomposition.
    Mohamed EF; Awad G; Zaitan H; Andriantsiferana C; Manero MH
    Environ Technol; 2018 Apr; 39(7):878-886. PubMed ID: 28368211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites.
    Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y
    J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Copper Speciation in the Low Temperature Oxidative Upgrading of Short Chain Alkanes over Cu/ZSM-5 Catalysts.
    Armstrong RD; Peneau V; Ritterskamp N; Kiely CJ; Taylor SH; Hutchings GJ
    Chemphyschem; 2018 Feb; 19(4):469-478. PubMed ID: 29193556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu
    Jin J; Li W; Zhang L; Zhu L; Wang L; Zhou Z
    J Colloid Interface Sci; 2023 Sep; 645():964-973. PubMed ID: 37182328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.
    Narsimhan K; Michaelis VK; Mathies G; Gunther WR; Griffin RG; Román-Leshkov Y
    J Am Chem Soc; 2015 Feb; 137(5):1825-32. PubMed ID: 25562431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature.
    Tomkins P; Mansouri A; Bozbag SE; Krumeich F; Park MB; Alayon EM; Ranocchiari M; van Bokhoven JA
    Angew Chem Int Ed Engl; 2016 Apr; 55(18):5467-71. PubMed ID: 27010863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane.
    Adebajo MO; Long MA; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):791-9. PubMed ID: 15036089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.