These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37014810)
1. A compendium of stable hotspots in the CHO genome. Hilliard W; Lee KH Biotechnol Bioeng; 2023 Aug; 120(8):2133-2143. PubMed ID: 37014810 [TBL] [Abstract][Full Text] [Related]
2. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis. Hilliard W; Lee KH Biotechnol Bioeng; 2021 Feb; 118(2):659-675. PubMed ID: 33049068 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis of random transgene integration in CHO manufacturing cell lines by targeted sequencing. Stadermann A; Gamer M; Fieder J; Lindner B; Fehrmann S; Schmidt M; Schulz P; Gorr IH Biotechnol Bioeng; 2022 Mar; 119(3):868-880. PubMed ID: 34935125 [TBL] [Abstract][Full Text] [Related]
4. Targeted integration in CHO cells using CRIS-PITCh/Bxb1 recombinase-mediated cassette exchange hybrid system. Ghanbari S; Bayat E; Azizi M; Fard-Esfahani P; Modarressi MH; Davami F Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):769-783. PubMed ID: 36536089 [TBL] [Abstract][Full Text] [Related]
5. A splinkerette PCR-based genome walking technique for the identification of transgene integration sites in CHO cells. Han HJ; Kim DH; Baik JY J Biotechnol; 2023 Jul; 371-372():1-9. PubMed ID: 37257509 [TBL] [Abstract][Full Text] [Related]
6. Multicopy Targeted Integration for Accelerated Development of High-Producing Chinese Hamster Ovary Cells. Sergeeva D; Lee GM; Nielsen LK; Grav LM ACS Synth Biol; 2020 Sep; 9(9):2546-2561. PubMed ID: 32835482 [TBL] [Abstract][Full Text] [Related]
7. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Zhao M; Wang J; Luo M; Luo H; Zhao M; Han L; Zhang M; Yang H; Xie Y; Jiang H; Feng L; Lu H; Zhu J Appl Microbiol Biotechnol; 2018 Jul; 102(14):6105-6117. PubMed ID: 29789882 [TBL] [Abstract][Full Text] [Related]
8. Concurrent transfection of randomized transgene configurations into targeted integration CHO host is an advantageous and cost-effective method for expression of complex molecules. Dong E; Lam C; Tang D; Louie S; Yim M; Williams AJ; Sawyer W; Yip S; Carver J; AlBarakat A; Tsukuda J; Snedecor B; Misaghi S Biotechnol J; 2021 Apr; 16(4):e2000230. PubMed ID: 33259700 [TBL] [Abstract][Full Text] [Related]
9. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells. Inniss MC; Bandara K; Jusiak B; Lu TK; Weiss R; Wroblewska L; Zhang L Biotechnol Bioeng; 2017 Aug; 114(8):1837-1846. PubMed ID: 28186334 [TBL] [Abstract][Full Text] [Related]
10. Improved recombinant antibody production by CHO cells using a production enhancer DNA element with repeated transgene integration at a predetermined chromosomal site. Kawabe Y; Inao T; Komatsu S; Huang G; Ito A; Omasa T; Kamihira M J Biosci Bioeng; 2017 Mar; 123(3):390-397. PubMed ID: 27856232 [TBL] [Abstract][Full Text] [Related]
11. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Chusainow J; Yang YS; Yeo JH; Toh PC; Asvadi P; Wong NS; Yap MG Biotechnol Bioeng; 2009 Mar; 102(4):1182-96. PubMed ID: 18979540 [TBL] [Abstract][Full Text] [Related]
12. Deciphering integration loci of CHO manufacturing cell lines using long read nanopore sequencing. Clappier C; Böttner D; Heinzelmann D; Stadermann A; Schulz P; Schmidt M; Lindner B N Biotechnol; 2023 Jul; 75():31-39. PubMed ID: 36925062 [TBL] [Abstract][Full Text] [Related]
13. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells. Sergeeva D; Camacho-Zaragoza JM; Lee JS; Kildegaard HF Methods Mol Biol; 2019; 1961():213-232. PubMed ID: 30912048 [TBL] [Abstract][Full Text] [Related]
14. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process. Calmels C; McCann A; Malphettes L; Andersen MR Metab Eng; 2019 Jan; 51():9-19. PubMed ID: 30227251 [TBL] [Abstract][Full Text] [Related]
15. Generation of a host cell line containing a MAR-rich landing pad for site-specific integration and expression of transgenes. Oliviero C; Hinz SC; Bogen JP; Kornmann H; Hock B; Kolmar H; Hagens G Biotechnol Prog; 2022 Jul; 38(4):e3254. PubMed ID: 35396920 [TBL] [Abstract][Full Text] [Related]
16. Development of a targeted integration Chinese hamster ovary host directly targeting either one or two vectors simultaneously to a single locus using the Cre/Lox recombinase-mediated cassette exchange system. Ng D; Zhou M; Zhan D; Yip S; Ko P; Yim M; Modrusan Z; Joly J; Snedecor B; Laird MW; Shen A Biotechnol Prog; 2021 Jul; 37(4):e3140. PubMed ID: 33666334 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. Veith N; Ziehr H; MacLeod RA; Reamon-Buettner SM BMC Biotechnol; 2016 Jan; 16():6. PubMed ID: 26800878 [TBL] [Abstract][Full Text] [Related]
18. Hybrid cell line development system utilizing site-specific integration and methotrexate-mediated gene amplification in Chinese hamster ovary cells. Min H; Kim SM; Kim D; Lee S; Lee S; Lee JS Front Bioeng Biotechnol; 2022; 10():977193. PubMed ID: 36185448 [TBL] [Abstract][Full Text] [Related]
19. A multi-landing pad DNA integration platform for mammalian cell engineering. Gaidukov L; Wroblewska L; Teague B; Nelson T; Zhang X; Liu Y; Jagtap K; Mamo S; Tseng WA; Lowe A; Das J; Bandara K; Baijuraj S; Summers NM; Lu TK; Zhang L; Weiss R Nucleic Acids Res; 2018 May; 46(8):4072-4086. PubMed ID: 29617873 [TBL] [Abstract][Full Text] [Related]
20. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Kim M; O'Callaghan PM; Droms KA; James DC Biotechnol Bioeng; 2011 Oct; 108(10):2434-46. PubMed ID: 21538334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]