These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 37014851)

  • 1. Deciphering the evolution of flavin-dependent monooxygenase stereoselectivity using ancestral sequence reconstruction.
    Chiang CH; Wymore T; Rodríguez Benítez A; Hussain A; Smith JL; Brooks CL; Narayan ARH
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2218248120. PubMed ID: 37014851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoenzymatic Total Synthesis of Natural Products.
    Chakrabarty S; Romero EO; Pyser JB; Yazarians JA; Narayan ARH
    Acc Chem Res; 2021 Mar; 54(6):1374-1384. PubMed ID: 33600149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-cell biocatalysis platform for gram-scale oxidative dearomatization of phenols.
    Baker Dockrey SA; Doyon TJ; Perkins JC; Narayan ARH
    Chem Biol Drug Des; 2019 Jun; 93(6):1207-1213. PubMed ID: 30485666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for selectivity in flavin-dependent monooxygenase-catalyzed oxidative dearomatization.
    Benítez AR; Tweedy S; Baker Dockrey SA; Lukowski AL; Wymore T; Khare D; Brooks CL; Palfey BA; Smith JL; Narayan ARH
    ACS Catal; 2019 Apr; 9(4):3633-3640. PubMed ID: 31346489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocatalytic site- and enantioselective oxidative dearomatization of phenols.
    Baker Dockrey SA; Lukowski AL; Becker MR; Narayan ARH
    Nat Chem; 2018 Feb; 10(2):119-125. PubMed ID: 29359749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavin dependent monooxygenases.
    Huijbers MM; Montersino S; Westphal AH; Tischler D; van Berkel WJ
    Arch Biochem Biophys; 2014 Feb; 544():2-17. PubMed ID: 24361254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocatalytic Stereoselective Oxidation of 2-Arylindoles.
    Champagne SE; Chiang CH; Gemmel PM; Brooks CL; Narayan ARH
    J Am Chem Soc; 2024 Jan; 146(4):2728-2735. PubMed ID: 38237569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenolic hydroxylases.
    Chenprakhon P; Pimviriyakul P; Tongsook C; Chaiyen P
    Enzymes; 2020; 47():283-326. PubMed ID: 32951826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative Indole Dearomatization for Asymmetric Furoindoline Synthesis by a Flavin-Dependent Monooxygenase Involved in the Biosynthesis of Bicyclic Thiopeptide Thiostrepton.
    Lin Z; Xue Y; Liang XW; Wang J; Lin S; Tao J; You SL; Liu W
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8401-8405. PubMed ID: 33496012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavoenzymes for biocatalysis.
    Hall M
    Enzymes; 2020; 47():37-62. PubMed ID: 32951829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Mechanistic Studies on Substrate and Stereoselectivity of the Indole Monooxygenase VpIndA1: New Avenues for Biocatalytic Epoxidations and Sulfoxidations.
    Kratky J; Eggerichs D; Heine T; Hofmann S; Sowa P; Weiße RH; Tischler D; Sträter N
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202300657. PubMed ID: 36762980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products.
    Pyser JB; Baker Dockrey SA; Benítez AR; Joyce LA; Wiscons RA; Smith JL; Narayan ARH
    J Am Chem Soc; 2019 Nov; 141(46):18551-18559. PubMed ID: 31692339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the mechanism of flavin action in the oxidative decarboxylation catalyzed by salicylate hydroxylase.
    Brandão TAS; Vieira LA; de Araújo SS; Nagem RAP
    Methods Enzymol; 2023; 685():241-277. PubMed ID: 37245904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of catalysis in flavin-dependent monooxygenases.
    Palfey BA; McDonald CA
    Arch Biochem Biophys; 2010 Jan; 493(1):26-36. PubMed ID: 19944667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin.
    Phintha A; Chaiyen P
    J Biol Chem; 2023 Dec; 299(12):105413. PubMed ID: 37918809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavoprotein monooxygenases: Versatile biocatalysts.
    Paul CE; Eggerichs D; Westphal AH; Tischler D; van Berkel WJH
    Biotechnol Adv; 2021 Nov; 51():107712. PubMed ID: 33588053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New frontiers in flavin-dependent monooxygenases.
    Reis RAG; Li H; Johnson M; Sobrado P
    Arch Biochem Biophys; 2021 Mar; 699():108765. PubMed ID: 33460580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavin-dependent N-hydroxylating enzymes: distribution and application.
    Mügge C; Heine T; Baraibar AG; van Berkel WJH; Paul CE; Tischler D
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6481-6499. PubMed ID: 32504128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts.
    de Gonzalo G; Mihovilovic MD; Fraaije MW
    Chembiochem; 2010 Nov; 11(16):2208-31. PubMed ID: 20936617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.