BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37014867)

  • 1. Optimal inference of molecular interaction dynamics in FRET microscopy.
    Kamino K; Kadakia N; Avgidis F; Liu ZX; Aoki K; Shimizu TS; Emonet T
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2211807120. PubMed ID: 37014867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational Bayes analysis of a photon-based hidden Markov model for single-molecule FRET trajectories.
    Okamoto K; Sako Y
    Biophys J; 2012 Sep; 103(6):1315-24. PubMed ID: 22995504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Screening of Protein-Protein Interactions Using Förster Resonance Energy Transfer (FRET-) Based Fluorescence Plate Reader Assay in Live Cells.
    Durhan ST; Sezer EN; Son CD; Baloglu FK
    Appl Spectrosc; 2023 Mar; 77(3):292-302. PubMed ID: 36345563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Single-Molecule Three-Color Förster Resonance Energy Transfer by Photon Distribution Analysis.
    Barth A; Voith von Voithenberg L; Lamb DC
    J Phys Chem B; 2019 Aug; 123(32):6901-6916. PubMed ID: 31117611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distribution-based method to resolve single-molecule Förster resonance energy transfer observations.
    Backović M; Price ES; Johnson CK; Ralston JP
    J Chem Phys; 2011 Apr; 134(14):145101. PubMed ID: 21495770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative protocol for intensity-based live cell FRET imaging.
    Kaminski CF; Rees EJ; Schierle GS
    Methods Mol Biol; 2014; 1076():445-54. PubMed ID: 24108638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photobleaching-based quantitative analysis of fluorescence resonance energy transfer inside single living cell.
    Wang L; Chen T; Qu J; Wei X
    J Fluoresc; 2010 Jan; 20(1):27-35. PubMed ID: 19588234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pixel-by-pixel autofluorescence corrected FRET in fluorescence microscopy improves accuracy for samples with spatially varied autofluorescence to signal ratio.
    Rebenku I; Lloyd CB; Szöllősi J; Vereb G
    Sci Rep; 2023 Feb; 13(1):2934. PubMed ID: 36804608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-fitting FLIM-FRET facilitates analysis of protein interactions in live zebrafish embryos.
    Auer JMT; Murphy LC; Xiao D; Li DU; Wheeler AP
    J Microsc; 2023 Jul; 291(1):43-56. PubMed ID: 36448983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells.
    Chang CW; Wu M; Merajver SD; Mycek MA
    J Biomed Opt; 2009; 14(6):060502. PubMed ID: 20059233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal/noise analysis of FRET-based sensors.
    Woehler A; Wlodarczyk J; Neher E
    Biophys J; 2010 Oct; 99(7):2344-54. PubMed ID: 20923670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validating pharmacological disruption of protein-protein interactions by acceptor photobleaching FRET imaging.
    Roszik J; Tóth G; Szöllősi J; Vereb G
    Methods Mol Biol; 2013; 986():165-78. PubMed ID: 23436412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying Kinetochores In Vivo Using FLIM-FRET.
    Yoo TY; Needleman DJ
    Methods Mol Biol; 2016; 1413():169-86. PubMed ID: 27193849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer (FRET)-based subcellular visualization of pathogen-induced host receptor signaling.
    Buntru A; Zimmermann T; Hauck CR
    BMC Biol; 2009 Nov; 7():81. PubMed ID: 19939239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging Protein-Protein Interactions by Förster Resonance Energy Transfer (FRET) Microscopy in Live Cells.
    Manzella-Lapeira J; Brzostowski JA
    Curr Protoc Protein Sci; 2018 Aug; 93(1):e58. PubMed ID: 29984911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling multi-state molecular dynamics in single-molecule FRET experiments. I. Theory of FRET-lines.
    Barth A; Opanasyuk O; Peulen TO; Felekyan S; Kalinin S; Sanabria H; Seidel CAM
    J Chem Phys; 2022 Apr; 156(14):141501. PubMed ID: 35428384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRET Microscopy for Real-Time Visualization of Second Messengers in Living Cells.
    Kraft AE; Nikolaev VO
    Methods Mol Biol; 2017; 1563():85-90. PubMed ID: 28324603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells.
    Clayton AH; Klonis N; Cody SH; Nice EC
    Eur Biophys J; 2005 Feb; 34(1):82-90. PubMed ID: 15232659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.