BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 37014915)

  • 1. Systematic comparison of unilamellar vesicles reveals that archaeal core lipid membranes are more permeable than bacterial membranes.
    Łapińska U; Glover G; Kahveci Z; Irwin NAT; Milner DS; Tourte M; Albers SV; Santoro AE; Richards TA; Pagliara S
    PLoS Biol; 2023 Apr; 21(4):e3002048. PubMed ID: 37014915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Converting
    Caforio A; Siliakus MF; Exterkate M; Jain S; Jumde VR; Andringa RLH; Kengen SWM; Minnaard AJ; Driessen AJM; van der Oost J
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3704-3709. PubMed ID: 29555770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis.
    de Kok NAW; Driessen AJM
    Extremophiles; 2022 Aug; 26(3):29. PubMed ID: 35976526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt tolerance of archaeal extremely halophilic lipid membranes.
    Tenchov B; Vescio EM; Sprott GD; Zeidel ML; Mathai JC
    J Biol Chem; 2006 Apr; 281(15):10016-23. PubMed ID: 16484230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the 'lipid divide'.
    Villanueva L; Schouten S; Damsté JS
    Environ Microbiol; 2017 Jan; 19(1):54-69. PubMed ID: 27112361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bioenergetic basis for membrane divergence in archaea and bacteria.
    Sojo V; Pomiankowski A; Lane N
    PLoS Biol; 2014 Aug; 12(8):e1001926. PubMed ID: 25116890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria.
    Sahonero-Canavesi DX; Siliakus MF; Abdala Asbun A; Koenen M; von Meijenfeldt FAB; Boeren S; Bale NJ; Engelman JC; Fiege K; Strack van Schijndel L; Sinninghe Damsté JS; Villanueva L
    Sci Adv; 2022 Dec; 8(50):eabq8652. PubMed ID: 36525503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids.
    Villanueva L; von Meijenfeldt FAB; Westbye AB; Yadav S; Hopmans EC; Dutilh BE; Damsté JSS
    ISME J; 2021 Jan; 15(1):168-182. PubMed ID: 32929208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaeal phospholipids: Structural properties and biosynthesis.
    Caforio A; Driessen AJM
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Nov; 1862(11):1325-1339. PubMed ID: 28007654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of archaeal membrane ether lipids.
    Jain S; Caforio A; Driessen AJ
    Front Microbiol; 2014; 5():641. PubMed ID: 25505460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early evolution of membrane lipids: how did the lipid divide occur?
    Koga Y
    J Mol Evol; 2011 Mar; 72(3):274-82. PubMed ID: 21259003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioadhesive giant vesicles for monitoring hydroperoxidation in lipid membranes.
    Aoki PH; Schroder AP; Constantino CJ; Marques CM
    Soft Matter; 2015 Aug; 11(30):5995-8. PubMed ID: 26067909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From promiscuity to the lipid divide: on the evolution of distinct membranes in Archaea and Bacteria.
    Koga Y
    J Mol Evol; 2014 Apr; 78(3-4):234-42. PubMed ID: 24573438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Birth of Archaeal Cells: Molecular Phylogenetic Analyses of G1P Dehydrogenase, G3P Dehydrogenases, and Glycerol Kinase Suggest Derived Features of Archaeal Membranes Having G1P Polar Lipids.
    Yokobori SI; Nakajima Y; Akanuma S; Yamagishi A
    Archaea; 2016; 2016():1802675. PubMed ID: 27774041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly and biophysical properties of archaeal lipids.
    Bhattacharya A
    Emerg Top Life Sci; 2022 Dec; 6(6):571-582. PubMed ID: 36377774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane properties of archaeal macrocyclic diether phospholipids.
    Dannenmuller O; Arakawa K; Eguchi T; Kakinuma K; Blanc S; Albrecht AM; Schmutz M; Nakatani Y; Ourisson G
    Chemistry; 2000 Feb; 6(4):645-54. PubMed ID: 10807176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why the Lipid Divide? Membrane Proteins as Drivers of the Split between the Lipids of the Three Domains of Life.
    Sojo V
    Bioessays; 2019 May; 41(5):e1800251. PubMed ID: 30970170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of Hybrid Neutral Lipids with Archaeal and Eukaryotic Characteristics in Engineered Saccharomyces cerevisiae.
    Zhang J; Li T; Hong Z; Ma C; Fang X; Zheng F; Teng W; Zhang C; Si T
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202214344. PubMed ID: 36424352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Polar Lipids as Regulators of Membrane Properties in Archaeal Lipid Bilayer Mimics.
    Salvador-Castell M; Brooks NJ; Winter R; Peters J; Oger PM
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34200063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal adaptation of the archaeal and bacterial lipid membranes.
    Koga Y
    Archaea; 2012; 2012():789652. PubMed ID: 22927779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.