These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37015058)

  • 1. Computational Investigations into Two-Photon Fibril Imaging Using the DANIR-2c Probe.
    Murugan NA; Zaleśny R
    J Phys Chem B; 2023 Apr; 127(14):3119-3125. PubMed ID: 37015058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the Binding Profiles of AZD2184 and Thioflavin T with Amyloid-β(1-42) Fibril by Molecular Docking and Molecular Dynamics Methods.
    Kuang G; Murugan NA; Tu Y; Nordberg A; Ågren H
    J Phys Chem B; 2015 Sep; 119(35):11560-7. PubMed ID: 26266837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile Dicyanomethylene-Based Fluorescent Probes for the Detection of β-Amyloid in Alzheimer's Disease: A Theoretical Perspective.
    Zhang M; Fu H; Hu W; Leng J; Zhang Y
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of amyloid-β fibrils using the DNA-intercalating dye YOYO-1: Binding mode and fibril formation kinetics.
    Lindberg DJ; Esbjörner EK
    Biochem Biophys Res Commun; 2016 Jan; 469(2):313-8. PubMed ID: 26612254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual binding-site-specific photophysical properties of a benzothiazole-based optical probe in amyloid beta fibrils.
    Arul Murugan N; Zaleśny R; Ågren H
    Phys Chem Chem Phys; 2018 Aug; 20(31):20334-20339. PubMed ID: 30043007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the LDS 821 dye as a potential NIR probe for the two photon imaging of amyloid fibrils.
    Udayan S; Sherin DR; Vijaykumar S; Manojkumar TK; Nampoori VPN; Thomas S
    Biomater Sci; 2020 Nov; 8(21):6082-6092. PubMed ID: 33000782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing Performance Investigations on Two-Photon Fluorescent Probes for Detecting
    Zhang Y; Luan N; Li K; Leng J; Hu W
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32235776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarity-active NIR probes with strong two-photon absorption and ultrahigh binding affinity of insulin amyloid fibrils.
    Li L; Lv Z; Man Z; Xu Z; Wei Y; Geng H; Fu H
    Chem Sci; 2021 Jan; 12(9):3308-3313. PubMed ID: 34164100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of donor-acceptor-donor curcumin analogues as near-infrared fluorescent probes for
    Fang D; Wen X; Wang Y; Sun Y; An R; Zhou Y; Ye D; Liu H
    Theranostics; 2022; 12(7):3178-3195. PubMed ID: 35547754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core Binding Site of a Thioflavin-T-Derived Imaging Probe on Amyloid β Fibrils Predicted by Computational Methods.
    Kawai R; Araki M; Yoshimura M; Kamiya N; Ono M; Saji H; Okuno Y
    ACS Chem Neurosci; 2018 May; 9(5):957-966. PubMed ID: 29381047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Binding Modes for Amino Naphthalene 2-Cyanoacrylate (ANCA) Probes to Amyloid Fibrils from Molecular Dynamics Simulations.
    He H; Xu J; Cheng DY; Fu L; Ge YS; Jiang FL; Liu Y
    J Phys Chem B; 2017 Feb; 121(6):1211-1221. PubMed ID: 28080057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Insight into the Binding Profile of DCVJ and α-Synuclein Fibril Revealed by Multiscale Simulations.
    Kuang G; Murugan NA; Ågren H
    ACS Chem Neurosci; 2019 Jan; 10(1):610-617. PubMed ID: 30277753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria-Directing Fluorogenic Probe: An Efficient Amyloid Marker for Imaging Lipid Metabolite-Induced Protein Aggregation in Live Cells and
    Pandey SP; P K; Dutta T; Chakraborty B; Koner AL; Singh PK
    Anal Chem; 2023 Apr; 95(15):6341-6350. PubMed ID: 37014217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular rotor-based turn-on sensor probe for amyloid fibrils in the extreme near-infrared region.
    Mudliar NH; Singh PK
    Chem Commun (Camb); 2019 Apr; 55(27):3907-3910. PubMed ID: 30869689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and evaluation of curcumin-based near-infrared fluorescent probes for the in vivo optical imaging of amyloid-β plaques.
    Park YD; Kinger M; Min C; Lee SY; Byun Y; Park JW; Jeon J
    Bioorg Chem; 2021 Oct; 115():105167. PubMed ID: 34358800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promising two-photon probes for in vivo detection of β amyloid deposits.
    Murugan NA; Zaleśny R; Kongsted J; Nordberg A; Ågren H
    Chem Commun (Camb); 2014 Oct; 50(79):11694-7. PubMed ID: 25141215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Smart Near-Infrared Fluorescence Probe for Selective Detection of Tau Fibrils in Alzheimer's Disease.
    Seo Y; Park KS; Ha T; Kim MK; Hwang YJ; Lee J; Ryu H; Choo H; Chong Y
    ACS Chem Neurosci; 2016 Nov; 7(11):1474-1481. PubMed ID: 27576176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study on donor-acceptor optical markers for Alzheimer's disease: a game of charge transfer and electron delocalization.
    Peccati F; Wiśniewska M; Solans-Monfort X; Sodupe M
    Phys Chem Chem Phys; 2016 Apr; 18(17):11634-43. PubMed ID: 26817795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Novel PET Imaging Probes for Detection of Amylin Aggregates in the Pancreas.
    Watanabe H; Kawano K; Shimizu Y; Iikuni S; Nakamoto Y; Togashi K; Ono M
    Mol Pharm; 2020 Apr; 17(4):1293-1299. PubMed ID: 32202808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive hemicyanine-based near-infrared fluorescence sensor for detecting toxic amyloid aggregates in human serum.
    Warerkar OD; Mudliar NH; Ahuja T; Shahane SD; Singh PK
    Int J Biol Macromol; 2023 Aug; 247():125621. PubMed ID: 37392920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.