These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37015125)

  • 1. Geometry- and Accuracy-Preserving Random Forest Proximities.
    Rhodes JS; Cutler A; Moon KR
    IEEE Trans Pattern Anal Mach Intell; 2023 Sep; 45(9):10947-10959. PubMed ID: 37015125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A treeless absolutely random forest with closed-form estimators of expected proximities.
    Laska E; Lin Z; Siegel C; Marmar C
    Stat Anal Data Min; 2024 Apr; 17(2):. PubMed ID: 39036335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced data fusion: Random forest proximities and pseudo-sample principle towards increased prediction accuracy and variable interpretation.
    Stavropoulos G; van Vorstenbosch R; Jonkers DMAE; Penders J; Hill JE; van Schooten FJ; Smolinska A
    Anal Chim Acta; 2021 Oct; 1183():339001. PubMed ID: 34627524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random forest: a classification and regression tool for compound classification and QSAR modeling.
    Svetnik V; Liaw A; Tong C; Culberson JC; Sheridan RP; Feuston BP
    J Chem Inf Comput Sci; 2003; 43(6):1947-58. PubMed ID: 14632445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random Forest Missing Data Algorithms.
    Tang F; Ishwaran H
    Stat Anal Data Min; 2017 Dec; 10(6):363-377. PubMed ID: 29403567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the random forest method in studies of local lymph node assay based skin sensitization data.
    Li S; Fedorowicz A; Singh H; Soderholm SC
    J Chem Inf Model; 2005; 45(4):952-64. PubMed ID: 16045289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene selection and classification of microarray data using random forest.
    Díaz-Uriarte R; Alvarez de Andrés S
    BMC Bioinformatics; 2006 Jan; 7():3. PubMed ID: 16398926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient-Specific Predictive Modeling Using Random Forests: An Observational Study for the Critically Ill.
    Lee J
    JMIR Med Inform; 2017 Jan; 5(1):e3. PubMed ID: 28096065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random forests with parametric entropy-based information gains for classification and regression problems.
    Ignatenko V; Surkov A; Koltcov S
    PeerJ Comput Sci; 2024; 10():e1775. PubMed ID: 38196961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale Supervised Classification of Point Clouds with Urban and Forest Applications.
    Cabo C; Ordóñez C; Sáchez-Lasheras F; Roca-Pardiñas J; Cos-Juez AJ
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31627468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A data-driven prediction of lifetime resilience of dairy cows using commercial sensor data collected during first lactation.
    Ouweltjes W; Spoelstra M; Ducro B; de Haas Y; Kamphuis C
    J Dairy Sci; 2021 Nov; 104(11):11759-11769. PubMed ID: 34454764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Supervised Random Forest on Transformed Distribution for Anomaly Detection.
    Liu J; Wang H; Hang H; Ma S; Shen X; Shi Y
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38261504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Data Adaptive Biological Sequence Representation for Supervised Learning.
    Cakin H; Gorgulu B; Baydogan MG; Zou N; Li J
    J Healthc Inform Res; 2018 Dec; 2(4):448-471. PubMed ID: 35415416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random Forest-Based Prediction of Outcome and Mortality in Patients with Traumatic Brain Injury Undergoing Primary Decompressive Craniectomy.
    Hanko M; Grendár M; Snopko P; Opšenák R; Šutovský J; Benčo M; Soršák J; Zeleňák K; Kolarovszki B
    World Neurosurg; 2021 Apr; 148():e450-e458. PubMed ID: 33444843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ties in proximity and clustering compounds.
    MacCuish J; Nicolaou C; MacCuish NE
    J Chem Inf Comput Sci; 2001; 41(1):134-46. PubMed ID: 11206366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction.
    Hong S; Lynn HS
    BMC Med Res Methodol; 2020 Jul; 20(1):199. PubMed ID: 32711455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the overestimation of random forest's out-of-bag error.
    Janitza S; Hornung R
    PLoS One; 2018; 13(8):e0201904. PubMed ID: 30080866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.