These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 37015180)

  • 21. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.
    Othman R; Vladisavljević GT; Thomas NL; Nagy ZK
    Colloids Surf B Biointerfaces; 2016 May; 141():187-195. PubMed ID: 26852102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the "ouzo region" upon drug loading.
    Beck-Broichsitter M; Rytting E; Lebhardt T; Wang X; Kissel T
    Eur J Pharm Sci; 2010 Oct; 41(2):244-53. PubMed ID: 20600881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of Zein-Based Nanoparticles: Nanoprecipitation versus Microfluidic-Assisted Manufacture, Effects of PEGylation on Nanoparticle Characteristics and Cellular Uptake by Melanoma Cells.
    Meewan J; Somani S; Almowalad J; Laskar P; Mullin M; MacKenzie G; Khadke S; Perrie Y; Dufès C
    Int J Nanomedicine; 2022; 17():2809-2822. PubMed ID: 35791309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Open-channel, water-in-oil emulsification in paper-based microfluidic devices.
    Li C; Boban M; Tuteja A
    Lab Chip; 2017 Apr; 17(8):1436-1441. PubMed ID: 28322402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing.
    Zhigaltsev IV; Belliveau N; Hafez I; Leung AK; Huft J; Hansen C; Cullis PR
    Langmuir; 2012 Feb; 28(7):3633-40. PubMed ID: 22268499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.
    Chen H; Celik AE; Mutschler A; Combes A; Runser A; Klymchenko AS; Lecommandoux S; Serra CA; Reisch A
    Langmuir; 2022 Jul; 38(26):7945-7955. PubMed ID: 35731957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis.
    Mavrogiannis N; Desmond M; Ling K; Fu X; Gagnon Z
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Designer polymer-based microcapsules made using microfluidics.
    Chen PW; Erb RM; Studart AR
    Langmuir; 2012 Jan; 28(1):144-52. PubMed ID: 22118302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On-chip polyelectrolyte coating onto magnetic droplets - towards continuous flow assembly of drug delivery capsules.
    Alorabi AQ; Tarn MD; Gómez-Pastora J; Bringas E; Ortiz I; Paunov VN; Pamme N
    Lab Chip; 2017 Nov; 17(22):3785-3795. PubMed ID: 28991297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional Hybrid Glyconanocapsules by a One-Pot Nanoprecipitation Process.
    Yan X; Alcouffe P; Bernard J; Ganachaud F
    Biomacromolecules; 2020 Nov; 21(11):4591-4598. PubMed ID: 32578984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous production of celecoxib nanoparticles using a three-dimensional-coaxial-flow microfluidic platform.
    Di D; Qu X; Liu C; Fang L; Quan P
    Int J Pharm; 2019 Dec; 572():118831. PubMed ID: 31715344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic Vortex Generation, Pulsed Injection, and Rapid Mixing of Blood Samples in Microfluidics Using the Tube Oscillation Mechanism.
    Thurgood P; Needham S; Pirogova E; Peter K; Baratchi S; Khoshmanesh K
    Anal Chem; 2023 Feb; 95(5):3089-3097. PubMed ID: 36692453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluid displacement during droplet formation at microfluidic flow-focusing junctions.
    Huang H; He X
    Lab Chip; 2015 Nov; 15(21):4197-205. PubMed ID: 26381220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous-flow production of polymeric micelles in microreactors: experimental and computational analysis.
    Capretto L; Carugo D; Cheng W; Hill M; Zhang X
    J Colloid Interface Sci; 2011 May; 357(1):243-51. PubMed ID: 21353232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles.
    Tao J; Chow SF; Zheng Y
    Acta Pharm Sin B; 2019 Jan; 9(1):4-18. PubMed ID: 30766774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic Production of Cell-Laden Microspheroidal Hydrogels with Different Geometric Shapes.
    Tian Y; Lipke EA
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6435-6444. PubMed ID: 33449645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and analysis of machine-learning guided flash nanoprecipitation (FNP) for continuous chitosan nanoparticles production.
    Wu H; He J; Cheng H; Yang L; Park HJ; Li J
    Int J Biol Macromol; 2022 Dec; 222(Pt A):1229-1237. PubMed ID: 36170931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoprecipitation process: From encapsulation to drug delivery.
    Martínez Rivas CJ; Tarhini M; Badri W; Miladi K; Greige-Gerges H; Nazari QA; Galindo Rodríguez SA; Román RÁ; Fessi H; Elaissari A
    Int J Pharm; 2017 Oct; 532(1):66-81. PubMed ID: 28801107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic nanoprecipitation systems for preparing pure drug or polymeric drug loaded nanoparticles: an overview.
    Ding S; Anton N; Vandamme TF; Serra CA
    Expert Opin Drug Deliv; 2016 Oct; 13(10):1447-60. PubMed ID: 27253154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.