These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37015232)

  • 1. Surface plasmon enhanced fluorescence: self-consistent classical treatment in the quasi-static limit.
    Genov DA
    Methods Appl Fluoresc; 2023 Apr; 11(3):. PubMed ID: 37015232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement and quenching of plasmon-enhanced spectroscopy of single molecule confined in metallic nanoparticle dimers.
    Pei H; Zhao J; Peng W; Dai Q; Wei Y
    Nanotechnology; 2023 Oct; 35(1):. PubMed ID: 37769644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon Enhanced Fluorescence and Raman Scattering by [Au-Ag Alloy NP Cluster]@SiO
    Zhang C; Zhang T; Zhang Z; Zheng H
    Front Chem; 2019; 7():647. PubMed ID: 31616656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles.
    Reineck P; Gómez D; Ng SH; Karg M; Bell T; Mulvaney P; Bach U
    ACS Nano; 2013 Aug; 7(8):6636-48. PubMed ID: 23713513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis.
    Mei Z; Tang L
    Anal Chem; 2017 Jan; 89(1):633-639. PubMed ID: 27991768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence Spectroscopy with Metal-Dielectric Waveguides.
    Badugu R; Szmacinski H; Ray K; Descrovi E; Ricciardi S; Zhang D; Chen J; Huo Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2015 Jul; 119(28):16245-16255. PubMed ID: 26523157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of plasmon emission and dynamics at the transition from classical to quantum coupling.
    Kravtsov V; Berweger S; Atkin JM; Raschke MB
    Nano Lett; 2014 Sep; 14(9):5270-5. PubMed ID: 25089501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of two-photon florescence in metallic nanoshells.
    Singh MR; Persaud PD; Yastrebov S
    Nanotechnology; 2020 Apr; 31(26):265203. PubMed ID: 32197263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay.
    Zhu J; Li JJ; Wang AQ; Chen Y; Zhao JW
    Nanoscale Res Lett; 2010 Jun; 5(9):1496-1501. PubMed ID: 20730117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer.
    Guo J; Black K; Hu J; Singh M
    J Phys Condens Matter; 2018 May; 30(18):185301. PubMed ID: 29546847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indium nanoparticle-based surface enhanced fluorescence from deep ultraviolet to near-infrared: A theoretical study.
    Priya S; Mandal A; Dantham VR
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120603. PubMed ID: 34844854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproduction of surface-enhanced resonant Raman scattering and fluorescence spectra of a strong coupling system composed of a single silver nanoparticle dimer and a few dye molecules.
    Itoh T; Yamamoto YS
    J Chem Phys; 2018 Dec; 149(24):244701. PubMed ID: 30599753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shell-Isolated Nanoparticle-Enhanced Phosphorescence.
    Meng M; Zhang FL; Yi J; Lin LH; Zhang CL; Bodappa N; Li CY; Zhang SJ; Aroca RF; Tian ZQ; Li JF
    Anal Chem; 2018 Sep; 90(18):10837-10842. PubMed ID: 30136575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-enhanced fluorescence and FRET on nanohole arrays excited at angled incidence.
    Poirier-Richard HP; Couture M; Brule T; Masson JF
    Analyst; 2015 Jul; 140(14):4792-8. PubMed ID: 25670087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral dependence of single molecule fluorescence enhancement.
    Bharadwaj P; Novotny L
    Opt Express; 2007 Oct; 15(21):14266-74. PubMed ID: 19550702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Interface Damping of Surface Plasmon Resonances.
    Lee SA; Link S
    Acc Chem Res; 2021 Apr; 54(8):1950-1960. PubMed ID: 33788547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures.
    Golmakaniyoon S; Hernandez-Martinez PL; Demir HV; Sun XW
    Sci Rep; 2016 Oct; 6():34086. PubMed ID: 27698422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy.
    Zhao T; Yu K; Li L; Zhang T; Guan Z; Gao N; Yuan P; Li S; Yao SQ; Xu QH; Xu GQ
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2700-8. PubMed ID: 24483257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic molecular nanohybrids-spectral dependence of fluorescence quenching.
    Olejnik M; Bujak Ł; Mackowski S
    Int J Mol Sci; 2012; 13(1):1018-1028. PubMed ID: 22312301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects.
    Tserkezis C; Stefanou N; Wubs M; Mortensen NA
    Nanoscale; 2016 Oct; 8(40):17532-17541. PubMed ID: 27722520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.