BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3701524)

  • 1. Effects of chronic in utero hypoxemia on rat neonatal pulmonary arterial structure.
    Geggel RL; Aronovitz MJ; Reid LM
    J Pediatr; 1986 May; 108(5 Pt 1):756-9. PubMed ID: 3701524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen toxicity and restructuring of pulmonary arteries--a morphometric study. The response to 4 weeks' exposure to hyperoxia and return to breathing air.
    Jones R; Zapol WM; Reid L
    Am J Pathol; 1985 Nov; 121(2):212-23. PubMed ID: 2932915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary artery structural changes in two colonies of rats with different sensitivity to chronic hypoxia.
    Langleben D; Jones RC; Aronovitz MJ; Hill NS; Ou LC; Reid LM
    Am J Pathol; 1987 Jul; 128(1):61-6. PubMed ID: 3605313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dimethylthiourea on chronic hypoxia-induced pulmonary arterial remodelling and ventricular hypertrophy in rats.
    Langleben D; Fox RB; Jones RC; Reid LM
    Clin Invest Med; 1989 Aug; 12(4):235-40. PubMed ID: 2535591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary artery remodeling and pulmonary hypertension after exposure to hyperoxia for 7 days. A morphometric and hemodynamic study.
    Jones R; Zapol WM; Reid L
    Am J Pathol; 1984 Nov; 117(2):273-85. PubMed ID: 6238536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prostaglandins on the pulmonary vascular bed of newborn rats with chronic hypoxia.
    Kashani IA; Richardson B; Lammers RJ; Merritt TA; Bloor CM
    Angiology; 1986 Jan; 37(1):21-6. PubMed ID: 3511774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BAY 41-2272, a direct activator of soluble guanylate cyclase, reduces right ventricular hypertrophy and prevents pulmonary vascular remodeling during chronic hypoxia in neonatal rats.
    Deruelle P; Balasubramaniam V; Kunig AM; Seedorf GJ; Markham NE; Abman SH
    Biol Neonate; 2006; 90(2):135-44. PubMed ID: 16582538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fetal tracheal occlusion in the rat model of nitrofen-induced congenital diaphragmatic hernia: tracheal occlusion reverses the arterial structural abnormality.
    Kanai M; Kitano Y; von Allmen D; Davies P; Adzick NS; Flake AW
    J Pediatr Surg; 2001 Jun; 36(6):839-45. PubMed ID: 11381408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4,300 m.
    Stenmark KR; Fasules J; Hyde DM; Voelkel NF; Henson J; Tucker A; Wilson H; Reeves JT
    J Appl Physiol (1985); 1987 Feb; 62(2):821-30. PubMed ID: 3558241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure function correlates in the pulmonary vasculature during acute lung injury and chronic pulmonary hypertension.
    Meyrick B
    Toxicol Pathol; 1991; 19(4 Pt 1):447-57. PubMed ID: 1813988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the pulmonary circulation in ventricular septal defect: a quantitative structural study.
    Haworth SG; Sauer U; BÅ©hlmeyer K; Reid L
    Am J Cardiol; 1977 Nov; 40(5):781-8. PubMed ID: 920615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that hypoxic pulmonary vascular remodeling in rats is polyamine dependent.
    Atkinson JE; Olson JW; Altiere RJ; Gillespie MN
    J Appl Physiol (1985); 1987 Apr; 62(4):1562-8. PubMed ID: 3110122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term survivors of pediatric heart transplantation: an autopsy study of their pulmonary vascular disease.
    Collins MH; Darragh RK; Caldwell RL; Turrentine MW; Brown JW
    J Heart Lung Transplant; 1995; 14(6 Pt 1):1116-25. PubMed ID: 8719459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early recovery from hypoxic pulmonary hypertension: a structural and functional study.
    Fried R; Reid LM
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Oct; 57(4):1247-53. PubMed ID: 6238924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological study of pulmonary vasculature in fatal cases of persistent pulmonary hypertension of the newborn.
    Ohara T; Ogata H; Tezuka F
    Tohoku J Exp Med; 1991 May; 164(1):59-66. PubMed ID: 1926147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall.
    Meyrick B; Reid L
    Am J Pathol; 1979 Jul; 96(1):51-70. PubMed ID: 464026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Congenital diaphragmatic hernia: arterial structural changes and persistent pulmonary hypertension after surgical repair.
    Geggel RL; Murphy JD; Langleben D; Crone RK; Vacanti JP; Reid LM
    J Pediatr; 1985 Sep; 107(3):457-64. PubMed ID: 4032138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rat pulmonary artery restructuring and pulmonary hypertension induced by continuous Escherichia coli endotoxin infusion.
    Kirton OC; Jones R
    Lab Invest; 1987 Feb; 56(2):198-210. PubMed ID: 3543489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smooth muscle myosin in precursor and mature smooth muscle cells in normal pulmonary arteries and the effect of hypoxia.
    Meyrick B; Fujiwara K; Reid L
    Exp Lung Res; 1981 Nov; 2(4):303-13. PubMed ID: 7032899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual vascular anomalies causing persistent pulmonary hypertension in a newborn.
    Goldstein JD; Rabinovitch M; Van Praagh R; Reid L
    Am J Cardiol; 1979 May; 43(5):962-8. PubMed ID: 433778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.