These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37015358)

  • 1. Offline Evaluation Matters: Investigation of the Influence of Offline Performance on Real-time Operation of Electromyography-based Neural-Machine Interfaces.
    Hinson RM; Berman J; Filer W; Kamper D; Hu X; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Relationship Between EMG Feature Space Characteristics and Control Performance in Machine Learning Myoelectric Control.
    Franzke AW; Kristoffersen MB; Jayaram V; van der Sluis CK; Murgia A; Bongers RM
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():21-30. PubMed ID: 33035157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affordable Embroidered EMG Electrodes for Myoelectric Control of Prostheses: A Pilot Study.
    Kamavuako EN; Brown M; Bao X; Chihi I; Pitou S; Howard M
    Sensors (Basel); 2021 Aug; 21(15):. PubMed ID: 34372482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship Between Offline and Online Metrics in Myoelectric Pattern Recognition Control Based on Target Achievement Control Test.
    Lv B; Sheng X; Hao D; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6595-6598. PubMed ID: 31947353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoelectric Control Based on A Generic Musculoskeletal Model: Towards A Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang HH
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; ():. PubMed ID: 29994312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the Intact Human Hand to Benchmark Real-Time Myoelectric Control Performance for Robotic Interfaces.
    Kowalski N; Zhu X; Crouch DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6524-6527. PubMed ID: 34892604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of the effect of arm position variation on real-time performance of motion classification.
    Geng Y; Zhang F; Yang L; Zhang Y; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2772-5. PubMed ID: 23366500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements.
    Abbaspour S; Naber A; Ortiz-Catalan M; GholamHosseini H; Lindén M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing Machine Learning and Physiological Knowledge for a Novel EMG-Based Neural-Machine Interface.
    Berman J; Hinson R; Lee IC; Huang H
    IEEE Trans Biomed Eng; 2023 Apr; 70(4):1125-1136. PubMed ID: 36173785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multi-Variate Approach to Predicting Myoelectric Control Usability.
    Nawfel JL; Englehart KB; Scheme EJ
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1312-1327. PubMed ID: 34214042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of User Practice on Prosthetic Finger Control With an Intuitive Myoelectric Decoder.
    Krasoulis A; Vijayakumar S; Nazarpour K
    Front Neurosci; 2019; 13():891. PubMed ID: 31551674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Reliable Multi-User EMG Interface Based on A Generic-Musculoskeletal Model against Loading Weight Changes
    Pan L; Harmody A; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2104-2107. PubMed ID: 30440818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating User and Machine Learning in Short- and Long-Term Pattern Recognition-Based Myoelectric Control.
    Lv B; Chai G; Sheng X; Ding H; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():777-785. PubMed ID: 33861704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time, simultaneous myoelectric control using force and position-based training paradigms.
    Ameri A; Scheme EJ; Kamavuako EN; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):279-87. PubMed ID: 24058007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. User-in-the-loop continuous and proportional control of a virtual prosthesis in a posture matching task.
    Pulliam CL; Lambrecht JM; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3557-9. PubMed ID: 23366695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of using combined EMG and kinematic signals for prosthesis control: A simulation study using a virtual reality environment.
    Blana D; Kyriacou T; Lambrecht JM; Chadwick EK
    J Electromyogr Kinesiol; 2016 Aug; 29():21-7. PubMed ID: 26190031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.
    Matrone GC; Cipriani C; Carrozza MC; Magenes G
    J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.