These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37015393)

  • 1. Four-Dimensional Cone Beam CT Imaging Using a Single Routine Scan via Deep Learning.
    Yang P; Ge X; Tsui T; Liang X; Xie Y; Hu Z; Niu T
    IEEE Trans Med Imaging; 2023 May; 42(5):1495-1508. PubMed ID: 37015393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
    Wang J; Gu X
    Med Phys; 2013 Oct; 40(10):101912. PubMed ID: 24089914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PNMC: Four-dimensional conebeam CT reconstruction combining prior network and motion compensation.
    Ou Z; Xie J; Teng Z; Wang X; Jin P; Du J; Ding M; Li H; Chen Y; Niu T
    Comput Biol Med; 2024 Mar; 171():108145. PubMed ID: 38442553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.
    Zhang Z; Liu J; Yang D; Kamilov US; Hugo GD
    Med Phys; 2023 Feb; 50(2):808-820. PubMed ID: 36412165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction.
    Madesta F; Sentker T; Gauer T; Werner R
    Med Phys; 2020 Nov; 47(11):5619-5631. PubMed ID: 33063329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction.
    Huang X; Zhang Y; Chen L; Wang J
    Med Phys; 2020 Jul; 47(7):3000-3012. PubMed ID: 32198934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-quality initial image-guided 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2020 Jun; 47(5):2099-2115. PubMed ID: 32017128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4D liver tumor localization using cone-beam projections and a biomechanical model.
    Zhang Y; Folkert MR; Li B; Huang X; Meyer JJ; Chiu T; Lee P; Tehrani JN; Cai J; Parsons D; Jia X; Wang J
    Radiother Oncol; 2019 Apr; 133():183-192. PubMed ID: 30448003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-quality four-dimensional cone-beam CT by deforming prior images.
    Wang J; Gu X
    Phys Med Biol; 2013 Jan; 58(2):231-46. PubMed ID: 23257113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis.
    Zhang Z; Huang M; Jiang Z; Chang Y; Lu K; Yin FF; Tran P; Wu D; Beltran C; Ren L
    Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35313293
    [No Abstract]   [Full Text] [Related]  

  • 11. Inter-fraction deformable image registration using unsupervised deep learning for CBCT-guided abdominal radiotherapy.
    Xie H; Lei Y; Fu Y; Wang T; Roper J; Bradley JD; Patel P; Liu T; Yang X
    Phys Med Biol; 2023 Apr; 68(9):. PubMed ID: 36958049
    [No Abstract]   [Full Text] [Related]  

  • 12. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method.
    Jia X; Tian Z; Lou Y; Sonke JJ; Jiang SB
    Med Phys; 2012 Sep; 39(9):5592-602. PubMed ID: 22957625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streaking artifacts reduction in four-dimensional cone-beam computed tomography.
    Leng S; Zambelli J; Tolakanahalli R; Nett B; Munro P; Star-Lack J; Paliwal B; Chen GH
    Med Phys; 2008 Oct; 35(10):4649-59. PubMed ID: 18975711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous 4D-CBCT reconstruction with sliding motion constraint.
    Dang J; Yin FF; You T; Dai C; Chen D; Wang J
    Med Phys; 2016 Oct; 43(10):5453. PubMed ID: 27782722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
    Amirian M; Montoya-Zegarra JA; Herzig I; Eggenberger Hotz P; Lichtensteiger L; Morf M; Züst A; Paysan P; Peterlik I; Scheib S; Füchslin RM; Stadelmann T; Schilling FP
    Med Phys; 2023 Oct; 50(10):6228-6242. PubMed ID: 36995003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.
    Yan H; Zhen X; Folkerts M; Li Y; Pan T; Cervino L; Jiang SB; Jia X
    Med Phys; 2014 Jul; 41(7):071903. PubMed ID: 24989381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pilot evaluation of a 4-dimensional cone-beam computed tomographic scheme based on simultaneous motion estimation and image reconstruction.
    Dang J; Gu X; Pan T; Wang J
    Int J Radiat Oncol Biol Phys; 2015 Feb; 91(2):410-8. PubMed ID: 25636763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction.
    Zhang H; Kruis M; Sonke JJ
    Phys Med Biol; 2017 Mar; 62(6):2254-2275. PubMed ID: 28140361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast four-dimensional cone-beam computed tomography reconstruction using deformable convolutional networks.
    Jiang Z; Chang Y; Zhang Z; Yin FF; Ren L
    Med Phys; 2022 Oct; 49(10):6461-6476. PubMed ID: 35713411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.