These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37015395)

  • 1. Closed-Loop Control of Electroadhesion Using Current Regulation.
    Sun Z; Guo X; Sun X
    IEEE Trans Haptics; 2022 Dec; PP():. PubMed ID: 37015395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact mechanics between the human finger and a touchscreen under electroadhesion.
    Ayyildiz M; Scaraggi M; Sirin O; Basdogan C; Persson BNJ
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12668-12673. PubMed ID: 30482858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed Loop Application of Electroadhesion for Increased Precision in Texture Rendering.
    V Grigorii R; Colgate JE
    IEEE Trans Haptics; 2020; 13(1):253-258. PubMed ID: 32054585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Sliding Friction Between Human Finger and Touchscreen Under Electroadhesion.
    Basdogan C; Sormoli MRA; Sirin O
    IEEE Trans Haptics; 2020; 13(3):511-521. PubMed ID: 32324569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-Dependent Behavior of Electrostatic Forces Between Human Finger and Touch Screen Under Electroadhesion.
    AliAbbasi E; Sormoli MA; Basdogan C
    IEEE Trans Haptics; 2022; 15(2):416-428. PubMed ID: 35171777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrowetting: A Consideration in Electroadhesion.
    Li X; Choi C; Ma Y; Boonpuek P; Felts JR; Mullenbach J; Shultz C; Colgate JE; Hipwell MC
    IEEE Trans Haptics; 2020; 13(3):522-529. PubMed ID: 32149656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotexture Shape and Surface Energy Impact on Electroadhesive Human-Machine Interface Performance.
    Li X; Ma Y; Choi C; Ma X; Chatterjee S; Lan S; Hipwell MC
    Adv Mater; 2021 Aug; 33(31):e2008337. PubMed ID: 34173278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Investigation of the Effect of the Driving Voltage of an Electroadhesion Actuator.
    Koh KH; Sreekumar M; Ponnambalam SG
    Materials (Basel); 2014 Jun; 7(7):4963-4981. PubMed ID: 28788114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the Electrowetting Effect on the Interfacial Mechanics between Human Corneocytes and Nanoasperities.
    Boonpuek P; Ma Y; Li X; Choi C; Hipwell MC; Felts JR
    Langmuir; 2021 Apr; 37(14):4056-4063. PubMed ID: 33793250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroadhesion with application to touchscreens.
    Sirin O; Ayyildiz M; Persson BNJ; Basdogan C
    Soft Matter; 2019 Feb; 15(8):1758-1775. PubMed ID: 30702137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Wide-Band Vibrotactile and Friction Modulation Surface Gratings.
    Grigorii RV; Li Y; Peshkin MA; Colgate JE
    IEEE Trans Haptics; 2021; 14(4):792-803. PubMed ID: 33905334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variable Stiffness Electroadhesion and Compliant Electroadhesive Grippers.
    Chen R; Zhang Z; Guo J; Liu F; Leng J; Rossiter J
    Soft Robot; 2022 Dec; 9(6):1074-1082. PubMed ID: 34890291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finger motion and contact by a second finger influence the tactile perception of electrovibration.
    Vardar Y; Kuchenbecker KJ
    J R Soc Interface; 2021 Mar; 18(176):20200783. PubMed ID: 33784888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Macro Model for Electroadhesive Contact of a Soft Finger With a Touchscreen.
    Argatov II; Borodich FM
    IEEE Trans Haptics; 2020; 13(3):504-510. PubMed ID: 31995499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Application of Tactile, Audible, and Ultrasonic Forces to Human Fingertips Using Broadband Electroadhesion.
    Shultz C; Peshkin M; Colgate JE; Shultz C; Peshkin M; Colgate JE; Shultz C; Peshkin M; Colgate JE
    IEEE Trans Haptics; 2018; 11(2):279-290. PubMed ID: 29911983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Electroadhesion Force Measurements of Electrostrictive Polymers: The Case of High Performance Plasticized Terpolymers.
    Fimbel A; Abensur T; Le MQ; Capsal JF; Cottinet PJ
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fingerpad contact evolution under electrovibration.
    Sirin O; Barrea A; Lefèvre P; Thonnard JL; Basdogan C
    J R Soc Interface; 2019 Jul; 16(156):20190166. PubMed ID: 31362623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UltraShiver: Lateral Force Feedback on a Bare Fingertip via Ultrasonic Oscillation and Electroadhesion.
    Xu H; Peshkin MA; Colgate JE
    IEEE Trans Haptics; 2019; 12(4):497-507. PubMed ID: 31425053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant Voltage Enhancement via Triboelectric Charge Supplement Channel for Self-Powered Electroadhesion.
    Xu L; Wu H; Yao G; Chen L; Yang X; Chen B; Huang X; Zhong W; Chen X; Yin Z; Wang ZL
    ACS Nano; 2018 Oct; 12(10):10262-10271. PubMed ID: 30189137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple and Reliable Method to Estimate the Fingertip Static Coefficient of Friction in Precision Grip.
    Barrea A; Bulens DC; Lefevre P; Thonnard JL
    IEEE Trans Haptics; 2016; 9(4):492-498. PubMed ID: 27831889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.