BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37015441)

  • 1. Fourier Domain Robust Denoising Decomposition and Adaptive Patch MRI Reconstruction.
    Tan J; Zhang X; Qing C; Xu X
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7299-7311. PubMed ID: 37015441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Sum of Outer Products Dictionary Learning (SOUP-DIL) and Its Application to Inverse Problems.
    Ravishankar S; Nadakuditi RR; Fessler JA
    IEEE Trans Comput Imaging; 2017 Dec; 3(4):694-709. PubMed ID: 29376111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.
    Huang J; Guo L; Feng Q; Chen W; Feng Y
    Phys Med Biol; 2015 Jul; 60(14):5359-80. PubMed ID: 26110788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Compressed sensing magnetic resonance image reconstruction based on double sparse model].
    Fan X; Lian Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Oct; 35(5):688-696. PubMed ID: 30370706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive sparsity level and dictionary size estimation for image reconstruction in accelerated 2D radial cine MRI.
    Pali MC; Schaeffter T; Kolbitsch C; Kofler A
    Med Phys; 2021 Jan; 48(1):178-192. PubMed ID: 33090537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive-size dictionary learning using information theoretic criteria for image reconstruction from undersampled k-space data in low field magnetic resonance imaging.
    Ahishakiye E; Van Gijzen MB; Tumwiine J; Obungoloch J
    BMC Med Imaging; 2020 Jun; 20(1):72. PubMed ID: 32600272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian nonparametric dictionary learning for compressed sensing MRI.
    Huang Y; Paisley J; Lin Q; Ding X; Fu X; Zhang XP
    IEEE Trans Image Process; 2014 Dec; 23(12):5007-19. PubMed ID: 25265609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressed sensing MRI based on image decomposition model and group sparsity.
    Fan X; Lian Q; Shi B
    Magn Reson Imaging; 2019 Jul; 60():101-109. PubMed ID: 30910695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating Dynamic MRI Reconstruction Using Adaptive Sequentially Truncated Higher-Order Singular Value Decomposition.
    Li Y; Shen Q; Jiang M; Zhu L; Li Y; Wang P; Li TQ
    Curr Med Imaging; 2022; 18(7):719-730. PubMed ID: 35240962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting sparsity and low-rank structure for the recovery of multi-slice breast MRIs with reduced sampling error.
    Yin XX; Ng BW; Ramamohanarao K; Baghai-Wadji A; Abbott D
    Med Biol Eng Comput; 2012 Sep; 50(9):991-1000. PubMed ID: 22644257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blind compressive sensing dynamic MRI.
    Lingala SG; Jacob M
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1132-45. PubMed ID: 23542951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.
    Ravishankar S; Moore BE; Nadakuditi RR; Fessler JA
    IEEE Trans Med Imaging; 2017 May; 36(5):1116-1128. PubMed ID: 28092528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Reconstruction of MR Scanned Images by Using a Dictionary Learning Scheme.
    Ikram S; Shah JA; Zubair S; Qureshi IM; Bilal M
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31018597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain.
    Yang B; Yuan M; Ma Y; Zhang J; Zhan K
    BMC Med Imaging; 2015 Aug; 15():28. PubMed ID: 26253135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressed sensing based dynamic MR image reconstruction by using 3D-total generalized variation and tensor decomposition: k-t TGV-TD.
    Zhang J; Han L; Sun J; Wang Z; Xu W; Chu Y; Xia L; Jiang M
    BMC Med Imaging; 2022 May; 22(1):101. PubMed ID: 35624425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image Recovery via Transform Learning and Low-Rank Modeling: The Power of Complementary Regularizers.
    Wen B; Li Y; Bresler Y
    IEEE Trans Image Process; 2020 Mar; ():. PubMed ID: 32203020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.
    Ravishankar S; Ye JC; Fessler JA
    Proc IEEE Inst Electr Electron Eng; 2020 Jan; 108(1):86-109. PubMed ID: 32095024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online Adaptive Image Reconstruction (OnAIR) Using Dictionary Models.
    Moore BE; Ravishankar S; Nadakuditi RR; Fessler JA
    IEEE Trans Comput Imaging; 2020; 6():153-166. PubMed ID: 32095490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regularized spherical polar fourier diffusion MRI with optimal dictionary learning.
    Cheng J; Jiang T; Deriche R; Shen D; Yap PT
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):639-46. PubMed ID: 24505721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components.
    Otazo R; Candès E; Sodickson DK
    Magn Reson Med; 2015 Mar; 73(3):1125-36. PubMed ID: 24760724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.