These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37015454)
1. Spatiotemporal Compliance Control for a Wearable Lower Limb Rehabilitation Robot. Zhou J; Peng H; Su S; Song R IEEE Trans Biomed Eng; 2023 Jun; 70(6):1858-1868. PubMed ID: 37015454 [TBL] [Abstract][Full Text] [Related]
2. Trajectory Deformation-Based Multi-Modal Adaptive Compliance Control for a Wearable Lower Limb Rehabilitation Robot. Zhou J; Peng H; Zheng M; Wei Z; Fan T; Song R IEEE Trans Neural Syst Rehabil Eng; 2024; 32():314-324. PubMed ID: 38165796 [TBL] [Abstract][Full Text] [Related]
3. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related]
4. The effect of stride length on lower extremity joint kinetics at various gait speeds. McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565 [TBL] [Abstract][Full Text] [Related]
5. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212 [TBL] [Abstract][Full Text] [Related]
6. Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism. Lin Y; Qu Q; Lin Y; He J; Zhang Q; Wang C; Jiang Z; Guo F; Jia J Biomed Res Int; 2021; 2021():9972560. PubMed ID: 34195289 [TBL] [Abstract][Full Text] [Related]
7. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284 [TBL] [Abstract][Full Text] [Related]
8. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants. Pinheiro C; Figueiredo J; Magalhães N; Santos CP Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845 [TBL] [Abstract][Full Text] [Related]
9. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial. Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131 [TBL] [Abstract][Full Text] [Related]
10. Adaptive position anticipation in a support robot for overground gait training enhances transparency. Everarts C; Vallery H; Bolliger M; Ronsse R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300 [TBL] [Abstract][Full Text] [Related]
11. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy. Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349 [TBL] [Abstract][Full Text] [Related]
12. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training. Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256 [TBL] [Abstract][Full Text] [Related]
13. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions. Tomelleri C; Waldner A; Werner C; Hesse S IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689 [TBL] [Abstract][Full Text] [Related]
14. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Tsai TC; Chiang MH Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171 [TBL] [Abstract][Full Text] [Related]
15. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people. Berger A; Horst F; Steinberg F; Thomas F; Müller-Eising C; Schöllhorn WI; Doppelmayr M J Neuroeng Rehabil; 2019 Dec; 16(1):161. PubMed ID: 31882008 [TBL] [Abstract][Full Text] [Related]
16. Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based on Safety-Motion Decision-Making Mechanism. Pan L; Song A; Duan S; Yu Z Biomed Res Int; 2017; 2017():4185939. PubMed ID: 28194413 [TBL] [Abstract][Full Text] [Related]
17. A Self-Coordinating Controller with Balance-Guiding Ability for Lower-Limb Rehabilitation Exoskeleton Robot. Qin L; Ji H; Chen M; Wang K Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300038 [TBL] [Abstract][Full Text] [Related]
18. Treadmill vs. overground walking: different response to physical interaction. Ochoa J; Sternad D; Hogan N J Neurophysiol; 2017 Oct; 118(4):2089-2102. PubMed ID: 28701533 [TBL] [Abstract][Full Text] [Related]
19. A reflexive neural network for dynamic biped walking control. Geng T; Porr B; Wörgötter F Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061 [TBL] [Abstract][Full Text] [Related]
20. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation. Yang T; Gao X IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]