These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37015472)
1. Voluntary Assist-as-Needed Controller for an Ankle Power-Assist Rehabilitation Robot. Yang R; Shen Z; Lyu Y; Zhuang Y; Li L; Song R IEEE Trans Biomed Eng; 2023 Jun; 70(6):1795-1803. PubMed ID: 37015472 [TBL] [Abstract][Full Text] [Related]
2. [Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot]. Shen Z; Zhang L; Su Y; Xing H; Li B Zhongguo Yi Liao Qi Xie Za Zhi; 2024 Jul; 48(4):385-391. PubMed ID: 39155250 [TBL] [Abstract][Full Text] [Related]
3. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
4. Voluntary Control of an Ankle Joint Exoskeleton by Able-Bodied Individuals and Stroke Survivors Using EMG-Based Admittance Control Scheme. Zhuang Y; Leng Y; Zhou J; Song R; Li L; Su SW IEEE Trans Biomed Eng; 2021 Feb; 68(2):695-705. PubMed ID: 32746072 [TBL] [Abstract][Full Text] [Related]
5. Research on an ankle rehabilitation robot for hemiplegic patients after stroke. Sun Z; Mu A; Wang C; Liu Q; Hao F; Wei J; Li W Proc Inst Mech Eng H; 2023 Oct; 237(10):1177-1189. PubMed ID: 37706474 [TBL] [Abstract][Full Text] [Related]
6. Myoelectrically controlled wrist robot for stroke rehabilitation. Song R; Tong KY; Hu X; Zhou W J Neuroeng Rehabil; 2013 Jun; 10():52. PubMed ID: 23758925 [TBL] [Abstract][Full Text] [Related]
7. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking. van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212 [TBL] [Abstract][Full Text] [Related]
8. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots. Guo B; Li Z; Huang M; Li X; Han J Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293 [TBL] [Abstract][Full Text] [Related]
9. Performance-Based Hybrid Control of a Cable-Driven Upper-Limb Rehabilitation Robot. Li X; Yang Q; Song R IEEE Trans Biomed Eng; 2021 Apr; 68(4):1351-1359. PubMed ID: 32997619 [TBL] [Abstract][Full Text] [Related]
10. Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model. Yao S; Zhuang Y; Li Z; Song R Front Neurorobot; 2018; 12():16. PubMed ID: 29692719 [TBL] [Abstract][Full Text] [Related]
11. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot]. Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386 [TBL] [Abstract][Full Text] [Related]
12. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb. Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995 [TBL] [Abstract][Full Text] [Related]
13. A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation. Luo L; Peng L; Wang C; Hou ZG IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3433-3443. PubMed ID: 30736008 [TBL] [Abstract][Full Text] [Related]
14. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation. Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038 [TBL] [Abstract][Full Text] [Related]
15. State of the art in parallel ankle rehabilitation robot: a systematic review. Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757 [TBL] [Abstract][Full Text] [Related]
16. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation. Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915 [TBL] [Abstract][Full Text] [Related]
17. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. Emken JL; Benitez R; Reinkensmeyer DJ J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527 [TBL] [Abstract][Full Text] [Related]
18. Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial. Frullo JM; Elinger J; Pehlivan AU; Fitle K; Nedley K; Francisco GE; Sergi F; O'Malley MK Front Neurorobot; 2017; 11():26. PubMed ID: 28659784 [TBL] [Abstract][Full Text] [Related]
19. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation. Yang T; Gao X IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825 [TBL] [Abstract][Full Text] [Related]
20. [Research on mode adjustment control strategy of upper limb rehabilitation robot based on fuzzy recognition of interaction force]. Li G; Tao L; Meng J; Ye S; Feng G; Zhao D; Hu Y; Tang M; Song T; Fu R; Zuo G; Zhang J; Shi C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):90-97. PubMed ID: 38403608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]