These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37015568)

  • 1. Physics-informed Deep Learning for Musculoskeletal Modelling: Predicting Muscle Forces and Joint Kinematics from Surface EMG.
    Zhang J; Zhao Y; Shone F; Li Z; Frangi AF; Xie SQ; Zhang ZQ
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bionic neural network for external simulation of human locomotor system.
    Shi Y; Ma S; Zhao Y
    ArXiv; 2023 Sep; ():. PubMed ID: 37744468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-Informed Deep Learning for Muscle Force Prediction With Unlabeled sEMG Signals.
    Ma S; Zhang J; Shi C; Di P; Robertson ID; Zhang ZQ
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1246-1256. PubMed ID: 38466606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Physics-Informed Low-Shot Adversarial Learning for sEMG-Based Estimation of Muscle Force and Joint Kinematics.
    Shi Y; Ma S; Zhao Y; Shi C; Zhang Z
    IEEE J Biomed Health Inform; 2024 Mar; 28(3):1309-1320. PubMed ID: 38150340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG-driven musculoskeletal model calibration with estimation of unmeasured muscle excitations
    Ao D; Vega MM; Shourijeh MS; Patten C; Fregly BJ
    Front Bioeng Biotechnol; 2022; 10():962959. PubMed ID: 36159690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Reinforcement Learning to Estimate Human Joint Moments From Electromyography or Joint Kinematics: An Alternative Solution to Musculoskeletal-Based Biomechanics.
    Wu W; Saul KR; Huang HH
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33332536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static optimization underestimates antagonist muscle activity at the glenohumeral joint: A musculoskeletal modeling study.
    Kian A; Pizzolato C; Halaki M; Ginn K; Lloyd D; Reed D; Ackland D
    J Biomech; 2019 Dec; 97():109348. PubMed ID: 31668905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems.
    Taneja K; He X; He Q; Zhao X; Lin YA; Loh KJ; Chen JS
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 35972808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From deep learning to transfer learning for the prediction of skeletal muscle forces.
    Dao TT
    Med Biol Eng Comput; 2019 May; 57(5):1049-1058. PubMed ID: 30552553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing level of neuromusculoskeletal model personalisation to investigate joint contact forces in cerebral palsy: A twin case study.
    Davico G; Pizzolato C; Lloyd DG; Obst SJ; Walsh HPJ; Carty CP
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():141-149. PubMed ID: 31877532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command.
    Buchanan TS; Lloyd DG; Manal K; Besier TF
    J Appl Biomech; 2004 Nov; 20(4):367-95. PubMed ID: 16467928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
    Lloyd DG; Besier TF
    J Biomech; 2003 Jun; 36(6):765-76. PubMed ID: 12742444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks.
    Pizzolato C; Lloyd DG; Sartori M; Ceseracciu E; Besier TF; Fregly BJ; Reggiani M
    J Biomech; 2015 Nov; 48(14):3929-36. PubMed ID: 26522621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Cervical Spine Compression and Shear in Helicopter Helmeted Conditions Using Artificial Neural Networks.
    Moore CAB; Barrett JM; Healey L; Callaghan JP; Fischer SL
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):154-166. PubMed ID: 34092207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG-Informed Neuromusculoskeletal Models Accurately Predict Knee Loading Measured Using Instrumented Implants.
    Bennett KJ; Pizzolato C; Martelli S; Bahl JS; Sivakumar A; Atkins GJ; Solomon LB; Thewlis D
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2268-2275. PubMed ID: 34990350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of muscle forces and joint moments using a forward-inverse dynamics model.
    Buchanan TS; Lloyd DG; Manal K; Besier TF
    Med Sci Sports Exerc; 2005 Nov; 37(11):1911-6. PubMed ID: 16286861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.