BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37015973)

  • 1. Revealing the static and dynamic nanomechanical properties of diatom frustules-Nature's glass lace.
    Cvjetinovic J; Luchkin SY; Statnik ES; Davidovich NA; Somov PA; Salimon AI; Korsunsky AM; Gorin DA
    Sci Rep; 2023 Apr; 13(1):5518. PubMed ID: 37015973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM nanoindentations of diatom biosilica surfaces.
    Losic D; Short K; Mitchell JG; Lal R; Voelcker NH
    Langmuir; 2007 Apr; 23(9):5014-21. PubMed ID: 17397194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The UV filtering potential of drop-casted layers of frustules of three diatom species.
    Su Y; Lenau TA; Gundersen E; Kirkensgaard JJK; Maibohm C; Pinti J; Ellegaard M
    Sci Rep; 2018 Jan; 8(1):959. PubMed ID: 29343724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silica Nanowire Growth on Coscinodiscus Species Diatom Frustules via Vapor-Liquid-Solid Process.
    Li A; Zhao X; Anderson S; Zhang X
    Small; 2018 Nov; 14(47):e1801822. PubMed ID: 30369025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated approach for probing the structure and mechanical properties of diatoms: Toward engineered nanotemplates.
    Moreno MD; Ma K; Schoenung J; Dávila LP
    Acta Biomater; 2015 Oct; 25():313-24. PubMed ID: 26196080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-shielding and wavelength conversion by centric diatom nanopatterned frustules.
    De Tommasi E; Congestri R; Dardano P; De Luca AC; Managò S; Rea I; De Stefano M
    Sci Rep; 2018 Nov; 8(1):16285. PubMed ID: 30390006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floating assembly of diatom Coscinodiscus sp. microshells.
    Wang Y; Pan J; Cai J; Zhang D
    Biochem Biophys Res Commun; 2012 Mar; 420(1):1-5. PubMed ID: 22387476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii.
    Kieu K; Li C; Fang Y; Cohoon G; Herrera OD; Hildebrand M; Sandhage KH; Norwood RA
    Opt Express; 2014 Jun; 22(13):15992-9. PubMed ID: 24977855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability.
    Su Y; Lundholm N; Ellegaard M
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5889-5899. PubMed ID: 29802480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying the thickness, pore size, and composition of diatom frustule in Pinnularia sp. with Al
    Soleimani M; Rutten L; Maddala SP; Wu H; Eren ED; Mezari B; Schreur-Piet I; Friedrich H; van Benthem RATM
    Sci Rep; 2020 Nov; 10(1):19498. PubMed ID: 33177559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations.
    Losic D; Rosengarten G; Mitchell JG; Voelcker NH
    J Nanosci Nanotechnol; 2006 Apr; 6(4):982-9. PubMed ID: 16736754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis.
    Goessling JW; Su Y; Cartaxana P; Maibohm C; Rickelt LF; Trampe ECL; Walby SL; Wangpraseurt D; Wu X; Ellegaard M; Kühl M
    New Phytol; 2018 Jul; 219(1):122-134. PubMed ID: 29672846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From diatoms to silica-based biohybrids.
    Nassif N; Livage J
    Chem Soc Rev; 2011 Feb; 40(2):849-859. PubMed ID: 21173981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture and material properties of diatom shells provide effective mechanical protection.
    Hamm CE; Merkel R; Springer O; Jurkojc P; Maier C; Prechtel K; Smetacek V
    Nature; 2003 Feb; 421(6925):841-3. PubMed ID: 12594512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometrical frustration of phase-separated domains in
    Feofilova M; Schüepp S; Schmid R; Hacker F; Spanke HT; Bain N; Jensen KE; Dufresne ER
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2201014119. PubMed ID: 35905319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of advanced mechanical defenses and potential technological applications of diatom shells.
    Hamm CE
    J Nanosci Nanotechnol; 2005 Jan; 5(1):108-19. PubMed ID: 15762169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of hierarchical design and morphology in the mechanical response of diatom-inspired structures via simulation.
    Gutiérrez A; Guney MG; Fedder GK; Dávila LP
    Biomater Sci; 2017 Dec; 6(1):146-153. PubMed ID: 29147717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can diatom girdle band pores act as a hydrodynamic viral defense mechanism?
    Herringer JW; Lester D; Dorrington GE; Rosengarten G
    J Biol Phys; 2019 Jun; 45(2):213-234. PubMed ID: 31140117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of mechanical properties of diatom frustules using nanoindentation.
    Subhash G; Yao S; Bellinger B; Gretz MR
    J Nanosci Nanotechnol; 2005 Jan; 5(1):50-6. PubMed ID: 15762160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diatom Silica for Biomedical Applications: Recent Progress and Advances.
    Maher S; Kumeria T; Aw MS; Losic D
    Adv Healthc Mater; 2018 Oct; 7(19):e1800552. PubMed ID: 30118185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.