These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37016308)

  • 1. Prediction of hot spots in protein-DNA binding interfaces based on discrete wavelet transform and wavelet packet transform.
    Sun Y; Wu H; Xu Z; Yue Z; Li K
    BMC Bioinformatics; 2023 Apr; 24(1):129. PubMed ID: 37016308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of hot spots in protein-DNA binding interfaces based on supervised isometric feature mapping and extreme gradient boosting.
    Li K; Zhang S; Yan D; Bin Y; Xia J
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):381. PubMed ID: 32938395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Protein-DNA Interface Hot Spots Based on Empirical Mode Decomposition and Machine Learning.
    Fang Z; Li Z; Li M; Yue Z; Li K
    Genes (Basel); 2024 May; 15(6):. PubMed ID: 38927611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feature-based approach to predict hot spots in protein-DNA binding interfaces.
    Zhang S; Zhao L; Zheng CH; Xia J
    Brief Bioinform; 2020 May; 21(3):1038-1046. PubMed ID: 30957840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally identifying hot spots in protein-DNA binding interfaces using an ensemble approach.
    Pan Y; Zhou S; Guan J
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):384. PubMed ID: 32938375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Hot Spot Residues at Protein-DNA Binding Interfaces Based on Sequence Information.
    Yao L; Wang H; Bin Y
    Interdiscip Sci; 2021 Mar; 13(1):1-11. PubMed ID: 33068261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting.
    Wang H; Liu C; Deng L
    Sci Rep; 2018 Sep; 8(1):14285. PubMed ID: 30250210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-supervised boosting SVM for predicting hot spots at protein-protein interfaces.
    Xu B; Wei X; Deng L; Guan J; Zhou S
    BMC Syst Biol; 2012; 6 Suppl 2(Suppl 2):S6. PubMed ID: 23282146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting.
    Ali F; Kumar H; Patil S; Kotecha K; Banjar A; Daud A
    Comput Biol Med; 2022 Jun; 145():105533. PubMed ID: 35447463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigorous assessment and integration of the sequence and structure based features to predict hot spots.
    Chen R; Chen W; Yang S; Wu D; Wang Y; Tian Y; Shi Y
    BMC Bioinformatics; 2011 Jul; 12():311. PubMed ID: 21798070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved DNA-binding hot spot residues prediction method by exploring interfacial neighbor properties.
    Zhang S; Wang L; Zhao L; Li M; Liu M; Li K; Bin Y; Xia J
    BMC Bioinformatics; 2021 May; 22(Suppl 3):253. PubMed ID: 34000983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XGBPRH: Prediction of Binding Hot Spots at Protein⁻RNA Interfaces Utilizing Extreme Gradient Boosting.
    Deng L; Sui Y; Zhang J
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting hot spots in protein interfaces based on protrusion index, pseudo hydrophobicity and electron-ion interaction pseudopotential features.
    Xia J; Yue Z; Di Y; Zhu X; Zheng CH
    Oncotarget; 2016 Apr; 7(14):18065-75. PubMed ID: 26934646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein interface hot spots prediction based on a hybrid feature selection strategy.
    Qiao Y; Xiong Y; Gao H; Zhu X; Chen P
    BMC Bioinformatics; 2018 Jan; 19(1):14. PubMed ID: 29334889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.
    Wang L; Liu ZP; Zhang XS; Chen L
    Protein Eng Des Sel; 2012 Mar; 25(3):119-26. PubMed ID: 22258275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy-based feature extraction technique in conjunction with wavelet packet transform for multi-mental task classification.
    Uyulan C; Ergüzel TT; Tarhan N
    Biomed Tech (Berl); 2019 Sep; 64(5):529-542. PubMed ID: 30849042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification Framework of the Bearing Faults of an Induction Motor Using Wavelet Scattering Transform-Based Features.
    Toma RN; Gao Y; Piltan F; Im K; Shon D; Yoon TH; Yoo DS; Kim JM
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-DNA interface hotspots prediction based on fusion features of embeddings of protein language model and handcrafted features.
    Li X; Wang GA; Wei Z; Wang H; Zhu X
    Comput Biol Chem; 2023 Dec; 107():107970. PubMed ID: 37866116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SXGBsite: Prediction of Protein-Ligand Binding Sites Using Sequence Information and Extreme Gradient Boosting.
    Zhao Z; Xu Y; Zhao Y
    Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31771119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.