BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37016410)

  • 1. Microbial production of high octane and high sensitivity olefinic ester biofuels.
    Carruthers DN; Kim J; Mendez-Perez D; Monroe E; Myllenbeck N; Liu Y; Davis RW; Sundstrom E; Lee TS
    Biotechnol Biofuels Bioprod; 2023 Apr; 16(1):60. PubMed ID: 37016410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels.
    Zheng Y; Liu Q; Li L; Qin W; Yang J; Zhang H; Jiang X; Cheng T; Liu W; Xu X; Xian M
    Biotechnol Biofuels; 2013; 6():57. PubMed ID: 23618128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production.
    Kang A; George KW; Wang G; Baidoo E; Keasling JD; Lee TS
    Metab Eng; 2016 Mar; 34():25-35. PubMed ID: 26708516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling selectivity of modular microbial biosynthesis of butyryl-CoA-derived designer esters.
    Lee JW; Trinh CT
    Metab Eng; 2022 Jan; 69():262-274. PubMed ID: 34883244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome reallocation enables the selective de novo biosynthesis of non-linear, branched-chain acetate esters.
    Seo H; Giannone RJ; Yang YH; Trinh CT
    Metab Eng; 2022 Sep; 73():38-49. PubMed ID: 35561848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the IPP-bypass mevalonate pathway and fed-batch fermentation for the production of isoprenol in Escherichia coli.
    Kang A; Mendez-Perez D; Goh EB; Baidoo EEK; Benites VT; Beller HR; Keasling JD; Adams PD; Mukhopadhyay A; Lee TS
    Metab Eng; 2019 Dec; 56():85-96. PubMed ID: 31499175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing isoprenol production by systematically tuning metabolic pathways using CRISPR interference in
    Kim J; Lee TS
    Front Bioeng Biotechnol; 2023; 11():1296132. PubMed ID: 38026852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering promiscuity of chloramphenicol acetyltransferase for microbial designer ester biosynthesis.
    Seo H; Lee JW; Giannone RJ; Dunlap NJ; Trinh CT
    Metab Eng; 2021 Jul; 66():179-190. PubMed ID: 33872779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of
    Zada B; Wang C; Park JB; Jeong SH; Park JE; Singh HB; Kim SW
    Biotechnol Biofuels; 2018; 11():210. PubMed ID: 30061932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling the hidden power of esterases for biomanufacturing of short-chain esters.
    Sarnaik AP; Shinde S; Mhatre A; Jansen A; Jha AK; McKeown H; Davis R; Varman AM
    Sci Rep; 2023 Jul; 13(1):10766. PubMed ID: 37402758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lepidopteran mevalonate pathway optimization in Escherichia coli efficiently produces isoprenol analogs for next-generation biofuels.
    Pang B; Li J; Eiben CB; Oksen E; Barcelos C; Chen R; Englund E; Sundstrom E; Keasling JD
    Metab Eng; 2021 Nov; 68():210-219. PubMed ID: 34673235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Saccharomyces cerevisiae for isoprenol production.
    Kim J; Baidoo EEK; Amer B; Mukhopadhyay A; Adams PD; Simmons BA; Lee TS
    Metab Eng; 2021 Mar; 64():154-166. PubMed ID: 33581331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of
    Siripong W; Wolf P; Kusumoputri TP; Downes JJ; Kocharin K; Tanapongpipat S; Runguphan W
    Biotechnol Biofuels; 2018; 11():1. PubMed ID: 29321810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in Enzymatic Properties of the Saccharomyces kudriavzevii and Saccharomyces uvarum Alcohol Acetyltransferases and Their Impact on Aroma-Active Compounds Production.
    Stribny J; Querol A; Pérez-Torrado R
    Front Microbiol; 2016; 7():897. PubMed ID: 27375606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production.
    Fatma Z; Hartman H; Poolman MG; Fell DA; Srivastava S; Shakeel T; Yazdani SS
    Metab Eng; 2018 Mar; 46():1-12. PubMed ID: 29408291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering isoprenoids production in metabolically versatile microbial host Pseudomonas putida.
    Wang X; Baidoo EEK; Kakumanu R; Xie S; Mukhopadhyay A; Lee TS
    Biotechnol Biofuels Bioprod; 2022 Dec; 15(1):137. PubMed ID: 36510293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of PapA5 acyltransferase substrate selectivity for optimization of short-chain alcohol-derived multimethyl-branched ester production in Escherichia coli.
    Roulet J; Galván V; Lara J; Salazar MO; Cholich V; Gramajo H; Arabolaza A
    Appl Microbiol Biotechnol; 2020 Oct; 104(20):8705-8718. PubMed ID: 32910267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the differences in oxidation of high-performance α- and β- diisobutylene biofuels via Synchrotron photoionization mass spectrometry.
    Terracciano AC; Neupane S; Popolan-Vaida DM; Blair RG; Hansen N; Vaghjiani GL; Vasu SS
    Sci Rep; 2020 Dec; 10(1):21776. PubMed ID: 33311537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain.
    Martínez-Alcantar L; Díaz-Pérez AL; Campos-García J
    World J Microbiol Biotechnol; 2019 Nov; 35(12):189. PubMed ID: 31748890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial biosynthesis of lactate esters.
    Lee JW; Trinh CT
    Biotechnol Biofuels; 2019; 12():226. PubMed ID: 31548868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.