These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 3701658)

  • 1. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum.
    Chan CY; Nicholson C
    J Physiol; 1986 Feb; 371():89-114. PubMed ID: 3701658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro.
    Chan CY; Hounsgaard J; Nicholson C
    J Physiol; 1988 Aug; 402():751-71. PubMed ID: 3236254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stellate cell inhibition of Purkinje cells in the turtle cerebellum in vitro.
    Midtgaard J
    J Physiol; 1992 Nov; 457():355-67. PubMed ID: 1297838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrainment of cerebellar purkinje cells with directional AC electric fields in anesthetized rats.
    Asan AS; Lang EJ; Sahin M
    Brain Stimul; 2020; 13(6):1548-1558. PubMed ID: 32919090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal characterization of population responses evoked by applied electric field in vitro: extracellular potential, magnetic evoked field, transmembrane potential, and current-source density analysis.
    Lopez L; Chan CY; Okada YC; Nicholson C
    J Neurosci; 1991 Jul; 11(7):1998-2010. PubMed ID: 2066771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitatory synaptic responses in turtle cerebellar Purkinje cells.
    Chan CY; Hounsgaard J; Midtgaard J
    J Physiol; 1989 Feb; 409():143-56. PubMed ID: 2585287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells.
    Barmack NH; Yakhnitsa V
    Cerebellum; 2015 Oct; 14(5):597-612. PubMed ID: 26424151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro.
    Ross WN; Werman R
    J Physiol; 1987 Aug; 389():319-36. PubMed ID: 3681730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic determinants of firing pattern in Purkinje cells of the turtle cerebellum in vitro.
    Hounsgaard J; Midtgaard J
    J Physiol; 1988 Aug; 402():731-49. PubMed ID: 2466989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses during eye movements of brain stem neurons that receive monosynaptic inhibition from the flocculus and ventral paraflocculus in monkeys.
    Lisberger SG; Pavelko TA; Broussard DM
    J Neurophysiol; 1994 Aug; 72(2):909-27. PubMed ID: 7983546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of the apparent tissue conductivity in the molecular and granular layers of the in vitro turtle cerebellum and the interpretation of current source-density analysis.
    Okada YC; Huang JC; Rice ME; Tranchina D; Nicholson C
    J Neurophysiol; 1994 Aug; 72(2):742-53. PubMed ID: 7983532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of Ca2+ influx in turtle Purkinje cell dendrites in vitro: role of a transient outward current.
    Midtgaard J; Lasser-Ross N; Ross WN
    J Neurophysiol; 1993 Dec; 70(6):2455-69. PubMed ID: 8120593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig.
    Llinás R; Mühlethaler M
    J Physiol; 1988 Oct; 404():215-40. PubMed ID: 3253432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular physiology of the turtle visual cortex: distinctive properties of pyramidal and stellate neurons.
    Connors BW; Kriegstein AR
    J Neurosci; 1986 Jan; 6(1):164-77. PubMed ID: 3944618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.
    Bikson M; Inoue M; Akiyama H; Deans JK; Fox JE; Miyakawa H; Jefferys JG
    J Physiol; 2004 May; 557(Pt 1):175-90. PubMed ID: 14978199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic excitation-inhibition balance shapes cerebellar output during motor behaviour.
    Jelitai M; Puggioni P; Ishikawa T; Rinaldi A; Duguid I
    Nat Commun; 2016 Dec; 7():13722. PubMed ID: 27976716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus.
    Lisberger SG; Pavelko TA; Bronte-Stewart HM; Stone LS
    J Neurophysiol; 1994 Aug; 72(2):954-73. PubMed ID: 7983548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output.
    Bekkers JM; Häusser M
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11447-52. PubMed ID: 17592119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.