These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37016798)

  • 1. Dual Photochemical H-Atom Transfer and Cobalt Catalysis for the Desaturative Synthesis of Phenols from Cyclohexanones.
    Caldora HP; Zhang Z; Tilby MJ; Turner O; Leonori D
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202301656. PubMed ID: 37016798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Desaturative Approach for Aromatic Aldehyde Synthesis via Synergistic Enamine, Photoredox and Cobalt Triple Catalysis.
    Zhao H; Caldora HP; Turner O; Douglas JJ; Leonori D
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202201870. PubMed ID: 35196413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols.
    Izawa Y; Pun D; Stahl SS
    Science; 2011 Jul; 333(6039):209-13. PubMed ID: 21659567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media.
    Wang Y; Yao J; Li H; Su D; Antonietti M
    J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of phenol derivatives from cyclohex-2-enones bearing an alkyne through Lewis acid-catalyzed enolization and intramolecular Alder-Rickert reaction.
    Kinbara A; Yamagishi T; Hanzawa N; Kawashima E; Miyaoka H
    J Org Chem; 2012 Oct; 77(20):8999-9005. PubMed ID: 23003109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A photochemical dehydrogenative strategy for aniline synthesis.
    U Dighe S; Juliá F; Luridiana A; Douglas JJ; Leonori D
    Nature; 2020 Aug; 584(7819):75-81. PubMed ID: 32760044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and photochemical rearrangements of 2-phenyl-2,5-cyclohexadien-1-ones. an efficient route to highly substituted phenols.
    Guo Z; Schultz AG; Antoulinakis EG
    Org Lett; 2001 Apr; 3(8):1177-80. PubMed ID: 11348188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Palladium-Catalyzed Aerobic Dehydrogenation of Cyclic Hydrocarbons for the Synthesis of Substituted Aromatics and Other Unsaturated Products.
    Iosub AV; Stahl SS
    ACS Catal; 2016 Dec; 6(12):8201-8213. PubMed ID: 28154785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative approach to para-C-H arylation of phenol: palladium-catalyzed tandem γ-arylation/aromatization of 2-cyclohexen-1-one derivatives.
    Imahori T; Tokuda T; Taguchi T; Takahata H
    Org Lett; 2012 Feb; 14(4):1172-5. PubMed ID: 22296212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation.
    Zhu Y; Yu G; Yang J; Yuan M; Xu D; Dong Z
    J Colloid Interface Sci; 2019 Jan; 533():259-267. PubMed ID: 30170277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant.
    Fabry DC; Ronge MA; Zoller J; Rueping M
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2801-5. PubMed ID: 25644740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc.
    Choi JH; Kim YH
    J Hazard Mater; 2009 Jul; 166(2-3):984-91. PubMed ID: 19171423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.
    Schutyser W; Van den Bosch S; Dijkmans J; Turner S; Meledina M; Van Tendeloo G; Debecker DP; Sels BF
    ChemSusChem; 2015 May; 8(10):1805-18. PubMed ID: 25881563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amidophosphane-copper(I)-catalyzed asymmetric conjugate addition of dialkylzinc reagents to racemic 6-substituted cyclohexenones to form 2,5-di- and 2,2,5-trisubstituted cyclohexanones.
    Selim K; Soeta T; Yamada K; Tomioka K
    Chem Asian J; 2008 Feb; 3(2):342-50. PubMed ID: 18069713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of 2-arylphenols via palladium-catalyzed cross-coupling of aryl iodides with 6-diazo-2-cyclohexenones.
    Yang K; Zhang J; Li Y; Cheng B; Zhao L; Zhai H
    Org Lett; 2013 Feb; 15(4):808-11. PubMed ID: 23363006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bimetallic effect promotes the activity of Rh in catalyzed selective hydrogenation of phenol.
    Li S; Zhao H; Ran W; Liu J; Liu R
    Chem Commun (Camb); 2022 Sep; 58(74):10357-10360. PubMed ID: 36004767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic asymmetric synthesis of butane diacetal-protected (4S,5S)-dihydroxycyclohexen-1-one and use in natural product synthesis.
    Burns DJ; Hachisu S; O'Brien P; Taylor RJ
    Org Biomol Chem; 2012 Oct; 10(38):7666-8. PubMed ID: 22930235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free Radical Chemistry Enabled by Visible Light-Induced Electron Transfer.
    Staveness D; Bosque I; Stephenson CR
    Acc Chem Res; 2016 Oct; 49(10):2295-2306. PubMed ID: 27529484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysis of the addition of benzenethiol to 2-cyclohexen-1-ones by uranyl-salophen complexes: a catalytic metallocleft with high substrate specificity.
    van Axel Castelli V; Dalla Cort A; Mandolini L; Reinhoudt DN; Schiaffino L
    Chemistry; 2000 Apr; 6(7):1193-8. PubMed ID: 10785805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of ketones from biomass-derived feedstock.
    Meng Q; Hou M; Liu H; Song J; Han B
    Nat Commun; 2017 Jan; 8():14190. PubMed ID: 28139709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.