These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 37016934)
21. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia. Thomson MN; Cuevas CA; Bewarder TM; Dittmayer C; Miller LN; Si J; Cornelius RJ; Su XT; Yang CL; McCormick JA; Hadchouel J; Ellison DH; Bachmann S; Mutig K Am J Physiol Renal Physiol; 2020 Jan; 318(1):F216-F228. PubMed ID: 31736353 [TBL] [Abstract][Full Text] [Related]
22. Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles. Torres-Pinzon DL; Ralph DL; Veiras LC; McDonough AA Am J Physiol Cell Physiol; 2021 Nov; 321(5):C897-C909. PubMed ID: 34613843 [TBL] [Abstract][Full Text] [Related]
23. Deletion of Kir5.1 Impairs Renal Ability to Excrete Potassium during Increased Dietary Potassium Intake. Wu P; Gao ZX; Zhang DD; Su XT; Wang WH; Lin DH J Am Soc Nephrol; 2019 Aug; 30(8):1425-1438. PubMed ID: 31239388 [TBL] [Abstract][Full Text] [Related]
24. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. Ferdaus MZ; Barber KW; López-Cayuqueo KI; Terker AS; Argaiz ER; Gassaway BM; Chambrey R; Gamba G; Rinehart J; McCormick JA J Physiol; 2016 Sep; 594(17):4945-66. PubMed ID: 27068441 [TBL] [Abstract][Full Text] [Related]
25. Regulation of renal Na transporters in response to dietary K. Yang L; Xu S; Guo X; Uchida S; Weinstein AM; Wang T; Palmer LG Am J Physiol Renal Physiol; 2018 Oct; 315(4):F1032-F1041. PubMed ID: 29923764 [TBL] [Abstract][Full Text] [Related]
26. Effects of dietary salt on renal Na+ transporter subcellular distribution, abundance, and phosphorylation status. Yang LE; Sandberg MB; Can AD; Pihakaski-Maunsbach K; McDonough AA Am J Physiol Renal Physiol; 2008 Oct; 295(4):F1003-16. PubMed ID: 18653479 [TBL] [Abstract][Full Text] [Related]
27. Differential roles of WNK4 in regulation of NCC in vivo. Yang YS; Xie J; Yang SS; Lin SH; Huang CL Am J Physiol Renal Physiol; 2018 May; 314(5):F999-F1007. PubMed ID: 29384416 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of AT2R and Bradykinin Type II Receptor (BK2R) Compromises High K Gu L; Wang J; Zhang DD; Meng X; Zhang Y; Zhang J; Zhang H; Guo X; Lin DH; Wang WH; Gu RM Hypertension; 2020 Feb; 75(2):439-448. PubMed ID: 31865783 [TBL] [Abstract][Full Text] [Related]
29. The salt sensitivity of Drd4-null mice is associated with the upregulations of sodium transporters in kidneys. Zhang M; Liu M; Wang W; Ren Z; Wang P; Xue Y; Wang X Hypertens Res; 2024 Aug; 47(8):2144-2156. PubMed ID: 38778170 [TBL] [Abstract][Full Text] [Related]
30. Deletion of the transcription factor Prox-1 specifically in the renal distal convoluted tubule causes hypomagnesemia via reduced expression of TRPM6 and NCC. Schnoz C; Moser S; Kratschmar DV; Odermatt A; Loffing-Cueni D; Loffing J Pflugers Arch; 2021 Jan; 473(1):79-93. PubMed ID: 33200256 [TBL] [Abstract][Full Text] [Related]
31. Upregulation of apical sodium-chloride cotransporter and basolateral chloride channels is responsible for the maintenance of salt-sensitive hypertension. Capasso G; Rizzo M; Garavaglia ML; Trepiccione F; Zacchia M; Mugione A; Ferrari P; Paulmichl M; Lang F; Loffing J; Carrel M; Damiano S; Wagner CA; Bianchi G; Meyer G Am J Physiol Renal Physiol; 2008 Aug; 295(2):F556-67. PubMed ID: 18480177 [TBL] [Abstract][Full Text] [Related]
32. Renal upregulation of NCC counteracts empagliflozin-mediated NHE3 inhibition in normotensive but not in hypertensive male rat. Castro PC; Santos-Rios TM; Martins FL; Crajoinas RO; Caetano MV; Lessa LMA; Luchi WM; McCormick JA; Girardi ACC Am J Physiol Cell Physiol; 2024 Jun; 326(6):C1573-C1589. PubMed ID: 38557357 [TBL] [Abstract][Full Text] [Related]
33. KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1). Zhang C; Wang L; Zhang J; Su XT; Lin DH; Scholl UI; Giebisch G; Lifton RP; Wang WH Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11864-9. PubMed ID: 25071208 [TBL] [Abstract][Full Text] [Related]
34. Control of sodium and potassium homeostasis by renal distal convoluted tubules. Gallafassi EA; Bezerra MB; Rebouças NA Braz J Med Biol Res; 2023; 56():e12392. PubMed ID: 36790288 [TBL] [Abstract][Full Text] [Related]
35. Extracellular K Penton D; Czogalla J; Wengi A; Himmerkus N; Loffing-Cueni D; Carrel M; Rajaram RD; Staub O; Bleich M; Schweda F; Loffing J J Physiol; 2016 Nov; 594(21):6319-6331. PubMed ID: 27457700 [TBL] [Abstract][Full Text] [Related]
36. Potassium Sensing by Renal Distal Tubules Requires Kir4.1. Cuevas CA; Su XT; Wang MX; Terker AS; Lin DH; McCormick JA; Yang CL; Ellison DH; Wang WH J Am Soc Nephrol; 2017 Jun; 28(6):1814-1825. PubMed ID: 28052988 [TBL] [Abstract][Full Text] [Related]
37. CD8 Liu Y; Rafferty TM; Rhee SW; Webber JS; Song L; Ko B; Hoover RS; He B; Mu S Nat Commun; 2017 Jan; 8():14037. PubMed ID: 28067240 [TBL] [Abstract][Full Text] [Related]
38. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Hoorn EJ; Gritter M; Cuevas CA; Fenton RA Physiol Rev; 2020 Jan; 100(1):321-356. PubMed ID: 31793845 [TBL] [Abstract][Full Text] [Related]
39. COP9 signalosome deletion promotes renal injury and distal convoluted tubule remodeling. Cornelius RJ; Nelson JW; Su XT; Yang CL; Ellison DH Am J Physiol Renal Physiol; 2022 Jul; 323(1):F4-F19. PubMed ID: 35532068 [TBL] [Abstract][Full Text] [Related]