BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37017779)

  • 1. Comparing Pruning and Thresholding with Continuous Shrinkage Polygenic Score Methods in a Large Sample of Ancestrally Diverse Adolescents from the ABCD Study
    Ahern J; Thompson W; Fan CC; Loughnan R
    Behav Genet; 2023 May; 53(3):292-309. PubMed ID: 37017779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Ancestry Polygenic Risk Score for Coronary Heart Disease Based on an Ancestrally Diverse Genome-Wide Association Study and Population-Specific Optimization.
    Smith JL; Tcheandjieu C; Dikilitas O; Iyer K; Miyazawa K; Hilliard A; Lynch J; Rotter JI; Chen YI; Sheu WH; Chang KM; Kanoni S; Tsao PS; Ito K; Kosel M; Clarke SL; Schaid DJ; Assimes TL; Kullo IJ
    Circ Genom Precis Med; 2024 Jun; 17(3):e004272. PubMed ID: 38380516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MUSSEL: Enhanced Bayesian polygenic risk prediction leveraging information across multiple ancestry groups.
    Jin J; Zhan J; Zhang J; Zhao R; O'Connell J; Jiang Y; ; Buyske S; Gignoux C; Haiman C; Kenny EE; Kooperberg C; North K; Koelsch BL; Wojcik G; Zhang H; Chatterjee N
    Cell Genom; 2024 Apr; 4(4):100539. PubMed ID: 38604127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multi-Ancestry Polygenic Risk Score for Coronary Heart Disease Based on an Ancestrally Diverse Genome-Wide Association Study and Population-Specific Optimization.
    Smith JL; Tcheandjieu C; Dikilitas O; Lyer K; Miyazawa K; Hilliard A; Lynch J; Rotter JI; Chen YI; Sheu WH; Chang KM; Kanoni S; Tsao P; Ito K; Kosel M; Clarke SL; Schaid DJ; Assimes TL; Kullo IJ
    medRxiv; 2023 Jun; ():. PubMed ID: 37609230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BridgePRS leverages shared genetic effects across ancestries to increase polygenic risk score portability.
    Hoggart CJ; Choi SW; García-González J; Souaiaia T; Preuss M; O'Reilly PF
    Nat Genet; 2024 Jan; 56(1):180-186. PubMed ID: 38123642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving polygenic prediction in ancestrally diverse populations.
    Ruan Y; Lin YF; Feng YA; Chen CY; Lam M; Guo Z; ; He L; Sawa A; Martin AR; Qin S; Huang H; Ge T
    Nat Genet; 2022 May; 54(5):573-580. PubMed ID: 35513724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide polygenic score to predict chronic kidney disease across ancestries.
    Khan A; Turchin MC; Patki A; Srinivasasainagendra V; Shang N; Nadukuru R; Jones AC; Malolepsza E; Dikilitas O; Kullo IJ; Schaid DJ; Karlson E; Ge T; Meigs JB; Smoller JW; Lange C; Crosslin DR; Jarvik GP; Bhatraju PK; Hellwege JN; Chandler P; Torvik LR; Fedotov A; Liu C; Kachulis C; Lennon N; Abul-Husn NS; Cho JH; Ionita-Laza I; Gharavi AG; Chung WK; Hripcsak G; Weng C; Nadkarni G; Irvin MR; Tiwari HK; Kenny EE; Limdi NA; Kiryluk K
    Nat Med; 2022 Jul; 28(7):1412-1420. PubMed ID: 35710995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable prediction accuracy of polygenic scores within an ancestry group.
    Mostafavi H; Harpak A; Agarwal I; Conley D; Pritchard JK; Przeworski M
    Elife; 2020 Jan; 9():. PubMed ID: 31999256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ensemble penalized regression method for multi-ancestry polygenic risk prediction.
    Zhang J; Zhan J; Jin J; Ma C; Zhao R; O'Connell J; Jiang Y; ; Koelsch BL; Zhang H; Chatterjee N
    Nat Commun; 2024 Apr; 15(1):3238. PubMed ID: 38622117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The construction of cross-population polygenic risk scores using transfer learning.
    Zhao Z; Fritsche LG; Smith JA; Mukherjee B; Lee S
    Am J Hum Genet; 2022 Nov; 109(11):1998-2008. PubMed ID: 36240765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large trans-ethnic meta-analysis identifies AKR1C4 as a novel gene associated with age at menarche.
    Sarnowski C; Cousminer DL; Franceschini N; Raffield LM; Jia G; Fernández-Rhodes L; Grant SFA; Hakonarson H; Lange LA; Long J; Sofer T; Tao R; Wallace RB; Wong Q; Zirpoli G; Boerwinkle E; Bradfield JP; Correa A; Kooperberg CL; North KE; Palmer JR; Zemel BS; Zheng W; Murabito JM; Lunetta KL
    Hum Reprod; 2021 Jun; 36(7):1999-2010. PubMed ID: 34021356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging both individual-level genetic data and GWAS summary statistics increases polygenic prediction.
    Albiñana C; Grove J; McGrath JJ; Agerbo E; Wray NR; Bulik CM; Nordentoft M; Hougaard DM; Werge T; Børglum AD; Mortensen PB; Privé F; Vilhjálmsson BJ
    Am J Hum Genet; 2021 Jun; 108(6):1001-1011. PubMed ID: 33964208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haplotype function score improves biological interpretation and cross-ancestry polygenic prediction of human complex traits.
    Song W; Shi Y; Lin GN
    Elife; 2024 Apr; 12():. PubMed ID: 38639992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and accurate Bayesian polygenic risk modeling with variational inference.
    Zabad S; Gravel S; Li Y
    Am J Hum Genet; 2023 May; 110(5):741-761. PubMed ID: 37030289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low and differential polygenic score generalizability among African populations due largely to genetic diversity.
    Majara L; Kalungi A; Koen N; Tsuo K; Wang Y; Gupta R; Nkambule LL; Zar H; Stein DJ; Kinyanda E; Atkinson EG; Martin AR
    HGG Adv; 2023 Apr; 4(2):100184. PubMed ID: 36873096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of polygenic prediction methodology within a reference-standardized framework.
    Pain O; Glanville KP; Hagenaars SP; Selzam S; Fürtjes AE; Gaspar HA; Coleman JRI; Rimfeld K; Breen G; Plomin R; Folkersen L; Lewis CM
    PLoS Genet; 2021 May; 17(5):e1009021. PubMed ID: 33945532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for multiancestry polygenic prediction improves performance across diverse populations.
    Zhang H; Zhan J; Jin J; Zhang J; Lu W; Zhao R; Ahearn TU; Yu Z; O'Connell J; Jiang Y; Chen T; Okuhara D; ; Garcia-Closas M; Lin X; Koelsch BL; Chatterjee N
    Nat Genet; 2023 Oct; 55(10):1757-1768. PubMed ID: 37749244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations.
    Ge T; Irvin MR; Patki A; Srinivasasainagendra V; Lin YF; Tiwari HK; Armstrong ND; Benoit B; Chen CY; Choi KW; Cimino JJ; Davis BH; Dikilitas O; Etheridge B; Feng YA; Gainer V; Huang H; Jarvik GP; Kachulis C; Kenny EE; Khan A; Kiryluk K; Kottyan L; Kullo IJ; Lange C; Lennon N; Leong A; Malolepsza E; Miles AD; Murphy S; Namjou B; Narayan R; O'Connor MJ; Pacheco JA; Perez E; Rasmussen-Torvik LJ; Rosenthal EA; Schaid D; Stamou M; Udler MS; Wei WQ; Weiss ST; Ng MCY; Smoller JW; Lebo MS; Meigs JB; Limdi NA; Karlson EW
    Genome Med; 2022 Jun; 14(1):70. PubMed ID: 35765100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of cross-ancestry genetic architecture on GWASs in admixed populations.
    Mester R; Hou K; Ding Y; Meeks G; Burch KS; Bhattacharya A; Henn BM; Pasaniuc B
    Am J Hum Genet; 2023 Jun; 110(6):927-939. PubMed ID: 37224807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries.
    Liang Y; Pividori M; Manichaikul A; Palmer AA; Cox NJ; Wheeler HE; Im HK
    Genome Biol; 2022 Jan; 23(1):23. PubMed ID: 35027082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.