These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37018137)

  • 21. Principal microbial groups: compositional alternative to phylogenetic grouping of microbiome data.
    Boyraz A; Pawlowsky-Glahn V; Egozcue JJ; Acar AC
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36007229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A compositional mediation model for a binary outcome: Application to microbiome studies.
    Sohn MB; Lu J; Li H
    Bioinformatics; 2021 Dec; 38(1):16-21. PubMed ID: 34415327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. powmic: an R package for power assessment in microbiome case-control studies.
    Chen L
    Bioinformatics; 2020 Jun; 36(11):3563-3565. PubMed ID: 32186690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A marginalized two-part Beta regression model for microbiome compositional data.
    Chai H; Jiang H; Lin L; Liu L
    PLoS Comput Biol; 2018 Jul; 14(7):e1006329. PubMed ID: 30036363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A general framework for association analysis of microbial communities on a taxonomic tree.
    Tang ZZ; Chen G; Alekseyenko AV; Li H
    Bioinformatics; 2017 May; 33(9):1278-1285. PubMed ID: 28003264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compositional zero-inflated network estimation for microbiome data.
    Ha MJ; Kim J; Galloway-Peña J; Do KA; Peterson CB
    BMC Bioinformatics; 2020 Dec; 21(Suppl 21):581. PubMed ID: 33371887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating and testing the microbial causal mediation effect with high-dimensional and compositional microbiome data.
    Wang C; Hu J; Blaser MJ; Li H
    Bioinformatics; 2020 Jan; 36(2):347-355. PubMed ID: 31329243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compositional knockoff filter for high-dimensional regression analysis of microbiome data.
    Srinivasan A; Xue L; Zhan X
    Biometrics; 2021 Sep; 77(3):984-995. PubMed ID: 32683674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Adaptive Multivariate Two-Sample Test With Application to Microbiome Differential Abundance Analysis.
    Banerjee K; Zhao N; Srinivasan A; Xue L; Hicks SD; Middleton FA; Wu R; Zhan X
    Front Genet; 2019; 10():350. PubMed ID: 31068967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compositional data network analysis via lasso penalized D-trace loss.
    Yuan H; He S; Deng M
    Bioinformatics; 2019 Sep; 35(18):3404-3411. PubMed ID: 31220226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compositional analysis of microbiome data using the linear decomposition model (LDM).
    Hu YJ; Satten GA
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37930883
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LinDA: linear models for differential abundance analysis of microbiome compositional data.
    Zhou H; He K; Chen J; Zhang X
    Genome Biol; 2022 Apr; 23(1):95. PubMed ID: 35421994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CCLasso: correlation inference for compositional data through Lasso.
    Fang H; Huang C; Zhao H; Deng M
    Bioinformatics; 2015 Oct; 31(19):3172-80. PubMed ID: 26048598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison study of differential abundance testing methods using two large Parkinson disease gut microbiome datasets derived from 16S amplicon sequencing.
    Wallen ZD
    BMC Bioinformatics; 2021 May; 22(1):265. PubMed ID: 34034646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compositional data analysis of the microbiome: fundamentals, tools, and challenges.
    Tsilimigras MC; Fodor AA
    Ann Epidemiol; 2016 May; 26(5):330-5. PubMed ID: 27255738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical Methods for Microbiome Compositional Data Network Inference: A Survey.
    Chen L; Wan H; He Q; He S; Deng M
    J Comput Biol; 2022 Jul; 29(7):704-723. PubMed ID: 35404093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets.
    Rodriguez-R LM; Konstantinidis KT
    Bioinformatics; 2014 Mar; 30(5):629-35. PubMed ID: 24123672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pairwise ratio-based differential abundance analysis of infant microbiome 16S sequencing data.
    Mildau K; Te Beest DE; Engel B; Gort G; Lambert J; Swinkels SHN; van Eeuwijk FA
    NAR Genom Bioinform; 2023 Mar; 5(1):lqad001. PubMed ID: 36685726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. fastANCOM: a fast method for analysis of compositions of microbiomes.
    Zhou C; Wang H; Zhao H; Wang T
    Bioinformatics; 2022 Mar; 38(7):2039-2041. PubMed ID: 35134120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How to Count Our Microbes? The Effect of Different Quantitative Microbiome Profiling Approaches.
    Galazzo G; van Best N; Benedikter BJ; Janssen K; Bervoets L; Driessen C; Oomen M; Lucchesi M; van Eijck PH; Becker HEF; Hornef MW; Savelkoul PH; Stassen FRM; Wolffs PF; Penders J
    Front Cell Infect Microbiol; 2020; 10():403. PubMed ID: 32850498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.