These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37018137)

  • 41. Discrete False-Discovery Rate Improves Identification of Differentially Abundant Microbes.
    Jiang L; Amir A; Morton JT; Heller R; Arias-Castro E; Knight R
    mSystems; 2017; 2(6):. PubMed ID: 29181446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sparse least trimmed squares regression with compositional covariates for high-dimensional data.
    Monti GS; Filzmoser P
    Bioinformatics; 2021 Nov; 37(21):3805-3814. PubMed ID: 34358286
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A powerful microbial group association test based on the higher criticism analysis for sparse microbial association signals.
    Koh H; Zhao N
    Microbiome; 2020 May; 8(1):63. PubMed ID: 32393397
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Fink I; Abdill RJ; Blekhman R; Grieneisen L
    mSystems; 2022 Jun; 7(3):e0138021. PubMed ID: 35499306
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A phylogenetic transform enhances analysis of compositional microbiota data.
    Silverman JD; Washburne AD; Mukherjee S; David LA
    Elife; 2017 Feb; 6():. PubMed ID: 28198697
    [TBL] [Abstract][Full Text] [Related]  

  • 46. mb-PHENIX: diffusion and supervised uniform manifold approximation for denoizing microbiota data.
    Padron-Manrique C; Vázquez-Jiménez A; Esquivel-Hernandez DA; Martinez Lopez YE; Neri-Rosario D; Sánchez-Castañeda JP; Giron-Villalobos D; Resendis-Antonio O
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38015858
    [TBL] [Abstract][Full Text] [Related]  

  • 47. nRCFV: a new, dataset-size-independent metric to quantify compositional heterogeneity in nucleotide and amino acid datasets.
    Fleming JF; Struck TH
    BMC Bioinformatics; 2023 Apr; 24(1):145. PubMed ID: 37046225
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial interactions from a new perspective: reinforcement learning reveals new insights into microbiome evolution.
    Ghadermazi P; Chan SHJ
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38212999
    [TBL] [Abstract][Full Text] [Related]  

  • 49. coda4microbiome: compositional data analysis for microbiome cross-sectional and longitudinal studies.
    Calle ML; Pujolassos M; Susin A
    BMC Bioinformatics; 2023 Mar; 24(1):82. PubMed ID: 36879227
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Batch effects correction for microbiome data with Dirichlet-multinomial regression.
    Dai Z; Wong SH; Yu J; Wei Y
    Bioinformatics; 2019 Mar; 35(5):807-814. PubMed ID: 30816927
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Learning sparse log-ratios for high-throughput sequencing data.
    Gordon-Rodriguez E; Quinn TP; Cunningham JP
    Bioinformatics; 2021 Dec; 38(1):157-163. PubMed ID: 34498030
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FastSpar: rapid and scalable correlation estimation for compositional data.
    Watts SC; Ritchie SC; Inouye M; Holt KE
    Bioinformatics; 2019 Mar; 35(6):1064-1066. PubMed ID: 30169561
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An informative approach on differential abundance analysis for time-course metagenomic sequencing data.
    Luo D; Ziebell S; An L
    Bioinformatics; 2017 May; 33(9):1286-1292. PubMed ID: 28057680
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Virtifier: a deep learning-based identifier for viral sequences from metagenomes.
    Miao Y; Liu F; Hou T; Liu Y
    Bioinformatics; 2022 Feb; 38(5):1216-1222. PubMed ID: 34908121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis.
    Fernandes AD; Reid JN; Macklaim JM; McMurrough TA; Edgell DR; Gloor GB
    Microbiome; 2014; 2():15. PubMed ID: 24910773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A robust approach for identifying differentially abundant features in metagenomic samples.
    Sohn MB; Du R; An L
    Bioinformatics; 2015 Jul; 31(14):2269-75. PubMed ID: 25792553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Link-HD: a versatile framework to explore and integrate heterogeneous microbial communities.
    Zingaretti LM; Renand G; Morgavi DP; Ramayo-Caldas Y
    Bioinformatics; 2020 Apr; 36(7):2298-2299. PubMed ID: 31738392
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of composition of microbiomes: a novel method for studying microbial composition.
    Mandal S; Van Treuren W; White RA; Eggesbø M; Knight R; Peddada SD
    Microb Ecol Health Dis; 2015; 26():27663. PubMed ID: 26028277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A distance based multisample test for high-dimensional compositional data with applications to the human microbiome.
    Zhang Q; Dao T
    BMC Bioinformatics; 2020 Dec; 21(Suppl 9):205. PubMed ID: 33272203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Simultaneous Feature Selection and Compositional Association Test for Detecting Sparse Associations in High-Dimensional Metagenomic Data.
    Hinton AL; Mucha PJ
    Front Microbiol; 2022; 13():837396. PubMed ID: 35387076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.