These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37018147)

  • 1. Finite mixtures of matrix variate Poisson-log normal distributions for three-way count data.
    Silva A; Qin X; Rothstein SJ; McNicholas PD; Subedi S
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37018147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multivariate Poisson-log normal mixture model for clustering transcriptome sequencing data.
    Silva A; Rothstein SJ; McNicholas PD; Subedi S
    BMC Bioinformatics; 2019 Jul; 20(1):394. PubMed ID: 31311497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A clustering procedure for three-way RNA sequencing data using data transformations and matrix-variate Gaussian mixture models.
    Scharl T; Grün B
    BMC Bioinformatics; 2024 Mar; 25(1):90. PubMed ID: 38429687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models.
    Rau A; Maugis-Rabusseau C; Martin-Magniette ML; Celeux G
    Bioinformatics; 2015 May; 31(9):1420-7. PubMed ID: 25563332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate.
    Liu X; Shi X; Chen C; Zhang L
    BMC Bioinformatics; 2015 Oct; 16():332. PubMed ID: 26475308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Powerful differential expression analysis incorporating network topology for next-generation sequencing data.
    Dona MSI; Prendergast LA; Mathivanan S; Keerthikumar S; Salim A
    Bioinformatics; 2017 May; 33(10):1505-1513. PubMed ID: 28172447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene network inference by fusing data from diverse distributions.
    Žitnik M; Zupan B
    Bioinformatics; 2015 Jun; 31(12):i230-9. PubMed ID: 26072487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Block Sparse Variational Bayes Regression Using Matrix Variate Distributions With Application to SSVEP Detection.
    Sharma S; Chaudhury S; Jayadeva
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):351-365. PubMed ID: 33048770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments.
    Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR
    BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parsimonious hidden Markov models for matrix-variate longitudinal data.
    Tomarchio SD; Punzo A; Maruotti A
    Stat Comput; 2022; 32(3):53. PubMed ID: 35730052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance in population models for count data, part I: maximum likelihood approximations.
    Plan EL; Maloney A; Trocóniz IF; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2009 Aug; 36(4):353-66. PubMed ID: 19653080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.
    Serra A; Coretto P; Fratello M; Tagliaferri R; Stegle O
    Bioinformatics; 2018 Feb; 34(4):625-634. PubMed ID: 29040390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VPAC: Variational projection for accurate clustering of single-cell transcriptomic data.
    Chen S; Hua K; Cui H; Jiang R
    BMC Bioinformatics; 2019 May; 20(Suppl 7):0. PubMed ID: 31074382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data.
    Zhang H; Xu J; Jiang N; Hu X; Luo Z
    Stat Med; 2015 Apr; 34(9):1577-89. PubMed ID: 25641202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bayesian model selection approach for identifying differentially expressed transcripts from RNA sequencing data.
    Papastamoulis P; Rattray M
    J R Stat Soc Ser C Appl Stat; 2018 Jan; 67(1):3-23. PubMed ID: 29353941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical framework for Landsat data modeling based on the matrix variate mean-mixture of normal model.
    Naderi M; Bekker A; Arashi M; Jamalizadeh A
    PLoS One; 2020; 15(4):e0230773. PubMed ID: 32271785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. M3S: a comprehensive model selection for multi-modal single-cell RNA sequencing data.
    Zhang Y; Wan C; Wang P; Chang W; Huo Y; Chen J; Ma Q; Cao S; Zhang C
    BMC Bioinformatics; 2019 Dec; 20(Suppl 24):672. PubMed ID: 31861972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data.
    Dai X; Erkkilä T; Yli-Harja O; Lähdesmäki H
    BMC Bioinformatics; 2009 May; 10():165. PubMed ID: 19480678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.