These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 37018205)
1. Physicochemical Profiling of Macrophage Heterogeneity Using Deep Learning Integrated Nanosensor Cytometry. Han S; Lee Y; Kim J; Cho SY ACS Sens; 2023 Apr; 8(4):1676-1683. PubMed ID: 37018205 [TBL] [Abstract][Full Text] [Related]
2. Nanosensor Chemical Cytometry for Characterizing the Efflux Heterogeneity of Nitric Oxide from Macrophages. Cho SY; Koman VB; Gong X; Moon SJ; Gordiichuk P; Strano MS ACS Nano; 2021 Aug; 15(8):13683-13691. PubMed ID: 34398614 [TBL] [Abstract][Full Text] [Related]
3. Nanosensor Chemical Cytometry: Advances and Opportunities in Cellular Therapy and Precision Medicine. Song Y; Tian C; Lee Y; Yoon M; Yoon SE; Cho SY ACS Meas Sci Au; 2023 Dec; 3(6):393-403. PubMed ID: 38145025 [TBL] [Abstract][Full Text] [Related]
4. Cellular lensing and near infrared fluorescent nanosensor arrays to enable chemical efflux cytometry. Cho SY; Gong X; Koman VB; Kuehne M; Moon SJ; Son M; Lew TTS; Gordiichuk P; Jin X; Sikes HD; Strano MS Nat Commun; 2021 May; 12(1):3079. PubMed ID: 34035262 [TBL] [Abstract][Full Text] [Related]
5. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Lu Y; Xue Q; Eisele MR; Sulistijo ES; Brower K; Han L; Amir el-AD; Pe'er D; Miller-Jensen K; Fan R Proc Natl Acad Sci U S A; 2015 Feb; 112(7):E607-15. PubMed ID: 25646488 [TBL] [Abstract][Full Text] [Related]
6. Deep-learning-assisted biophysical imaging cytometry at massive throughput delineates cell population heterogeneity. Siu DMD; Lee KCM; Lo MCK; Stassen SV; Wang M; Zhang IZQ; So HKH; Chan GCF; Cheah KSE; Wong KKY; Hsin MKY; Ho JCM; Tsia KK Lab Chip; 2020 Oct; 20(20):3696-3708. PubMed ID: 32935707 [TBL] [Abstract][Full Text] [Related]
7. High Spatiotemporal Precision Mapping of Optical Nanosensor Array Using Machine Learning. Tian C; Shin S; Cho Y; Song Y; Cho SY ACS Sens; 2024 Oct; 9(10):5489-5499. PubMed ID: 39319474 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive detection of macrophage activation with single-cell resolution through machine learning. Pavillon N; Hobro AJ; Akira S; Smith NI Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2676-E2685. PubMed ID: 29511099 [TBL] [Abstract][Full Text] [Related]
9. Information-Distilled Generative Label-Free Morphological Profiling Encodes Cellular Heterogeneity. Lo MCK; Siu DMD; Lee KCM; Wong JSJ; Yeung MCF; Hsin MKY; Ho JCM; Tsia KK Adv Sci (Weinh); 2024 Aug; 11(29):e2307591. PubMed ID: 38864546 [TBL] [Abstract][Full Text] [Related]
10. Differentiating single cervical cells by mitochondrial fluorescence imaging and deep learning-based label-free light scattering with multi-modal static cytometry. Liu S; Chu R; Xie J; Song K; Su X Cytometry A; 2023 Mar; 103(3):240-250. PubMed ID: 36028474 [TBL] [Abstract][Full Text] [Related]
11. Single-cell analysis reveals TLR-induced macrophage heterogeneity and quorum sensing dictate population wide anti-inflammatory feedback in response to LPS. Tiemeijer BM; Heester S; Sturtewagen AYW; Smits AIPM; Tel J Front Immunol; 2023; 14():1135223. PubMed ID: 36911668 [TBL] [Abstract][Full Text] [Related]
12. Physicochemical properties of liposomal modifiers that shift macrophage phenotype. Bygd HC; Ma L; Bratlie KM Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():237-244. PubMed ID: 28629014 [TBL] [Abstract][Full Text] [Related]
13. Probing Dynamic Features of Phagosome Maturation in Macrophage using Au@MnO Shang J; Yang Q; Fan W; Chen Y; Tang D; Guo H; Xiong B; Huang S; Zhang XB Chem Asian J; 2021 May; 16(9):1150-1156. PubMed ID: 33724702 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping. Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966 [TBL] [Abstract][Full Text] [Related]
15. Characterization of clonally derived, spontaneously transformed bone marrow macrophage cell lines from lipopolysaccharide hyporesponsive LPS(d) and normal LPS(n) mice. Monner DA; Denker B J Leukoc Biol; 1997 Apr; 61(4):469-80. PubMed ID: 9103234 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning-Based Single-Cell Optical Image Studies. Sun J; Tárnok A; Su X Cytometry A; 2020 Mar; 97(3):226-240. PubMed ID: 31981309 [TBL] [Abstract][Full Text] [Related]
18. Detection of a factor released by L5178Y lymphoblasts that inhibits mouse macrophage-activation induced by lipopolysaccharides. Palacios-Corona R; Ortíz-Navarrete VF; Said-Fernández S; Rodríguez-Padilla C; González-Garza MT Arch Med Res; 1999; 30(4):298-302. PubMed ID: 10573631 [TBL] [Abstract][Full Text] [Related]
19. Differential detection of immune cell activation by label-free radiation pressure force. Lu Q; Barlow DE; Haridas D Analyst; 2021 Aug; 146(16):5150-5159. PubMed ID: 34286712 [TBL] [Abstract][Full Text] [Related]
20. The ability to suppress macrophage-mediated inflammation in orbital fat stem cells is controlled by miR-671-5p. Lien GS; Liu JF; Chien MH; Hsu WT; Chang TH; Ku CC; Ji AT; Tan P; Hsieh TL; Lee LM; Ho JH Stem Cell Res Ther; 2014 Aug; 5(4):97. PubMed ID: 25124290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]