BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37018341)

  • 21. Drug Repositioning Based on Deep Sparse Autoencoder and Drug-Disease Similarity.
    Lei S; Lei X; Chen M; Pan Y
    Interdiscip Sci; 2024 Mar; 16(1):160-175. PubMed ID: 38103130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug repositioning using drug-disease vectors based on an integrated network.
    Lee T; Yoon Y
    BMC Bioinformatics; 2018 Nov; 19(1):446. PubMed ID: 30463505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity.
    Li G; Luo J; Xiao Q; Liang C; Ding P
    J Biomed Inform; 2018 Jun; 82():169-177. PubMed ID: 29763707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A network-based drug repurposing method via non-negative matrix factorization.
    Sadeghi S; Lu J; Ngom A
    Bioinformatics; 2022 Feb; 38(5):1369-1377. PubMed ID: 34875000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning from low-rank multimodal representations for predicting disease-drug associations.
    Hu P; Huang YA; Mei J; Leung H; Chen ZH; Kuang ZM; You ZH; Hu L
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 1):308. PubMed ID: 34736437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Network neighborhood operates as a drug repositioning method for cancer treatment.
    Cüvitoğlu A; Isik Z
    PeerJ; 2023; 11():e15624. PubMed ID: 37456868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NTD-DR: Nonnegative tensor decomposition for drug repositioning.
    Jamali AA; Tan Y; Kusalik A; Wu FX
    PLoS One; 2022; 17(7):e0270852. PubMed ID: 35862409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration.
    Wu G; Liu J; Wang C
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):79. PubMed ID: 29297383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational drug repositioning using meta-path-based semantic network analysis.
    Tian Z; Teng Z; Cheng S; Guo M
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):134. PubMed ID: 30598084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Computational Bipartite Graph-Based Drug Repurposing Method.
    Zheng S; Ma H; Wang J; Li J
    Methods Mol Biol; 2019; 1903():115-127. PubMed ID: 30547439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico drug repositioning based on integrated drug targets and canonical correlation analysis.
    Chen H; Zhang Z; Zhang J
    BMC Med Genomics; 2022 Mar; 15(1):48. PubMed ID: 35249529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Drug Repositioning with Random Walk on a Heterogeneous Network.
    Luo H; Wang J; Li M; Luo J; Ni P; Zhao K; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1890-1900. PubMed ID: 29994051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid attentional memory network for computational drug repositioning.
    He J; Yang X; Gong Z; Zamit L
    BMC Bioinformatics; 2020 Dec; 21(1):566. PubMed ID: 33297947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information.
    Zhang W; Chen Y; Li D
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures.
    Yan C; Feng L; Wang W; Wang J; Zhang G; Luo J
    Curr Mol Med; 2020; 20(6):442-451. PubMed ID: 31729291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug-disease association prediction.
    Kitsiranuwat S; Suratanee A; Plaimas K
    Sci Prog; 2022; 105(3):368504221109215. PubMed ID: 35801312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overlap matrix completion for predicting drug-associated indications.
    Yang M; Luo H; Li Y; Wu FX; Wang J
    PLoS Comput Biol; 2019 Dec; 15(12):e1007541. PubMed ID: 31869322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical Negative Sampling Based Graph Contrastive Learning Approach for Drug-Disease Association Prediction.
    Wang Y; Song J; Dai Q; Duan X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3146-3157. PubMed ID: 38294927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.