These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37018428)
1. Electrically Conductive π-Intercalated Graphitic Metal-Organic Framework Containing Alternate π-Donor/Acceptor Stacks. Yadav A; Zhang S; Benavides PA; Zhou W; Saha S Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303819. PubMed ID: 37018428 [TBL] [Abstract][Full Text] [Related]
2. Rare Guest-Induced Electrical Conductivity of Zn-Porphyrin Metallacage Inclusion Complexes Featuring π-Donor/Acceptor/Donor Stacks. Benavides PA; Gordillo MA; Thibodeaux E; Yadav A; Johnson E; Sachdeva R; Saha S ACS Appl Mater Interfaces; 2024 Jan; 16(1):1234-1242. PubMed ID: 38108279 [TBL] [Abstract][Full Text] [Related]
3. Electrically Conductive 3D Metal-Organic Framework Featuring π-Acidic Hexaazatriphenylene Hexacarbonitrile Ligands with Anion-π Interaction and Efficient Charge-Transport Capabilities. Yadav A; Panda DK; Zhang S; Zhou W; Saha S ACS Appl Mater Interfaces; 2020 Sep; 12(36):40613-40619. PubMed ID: 32786221 [TBL] [Abstract][Full Text] [Related]
4. Effects of intervalence charge transfer interaction between π-stacked mixed valent tetrathiafulvalene ligands on the electrical conductivity of 3D metal-organic frameworks. Zhang S; Panda DK; Yadav A; Zhou W; Saha S Chem Sci; 2021 Oct; 12(40):13379-13391. PubMed ID: 34777756 [TBL] [Abstract][Full Text] [Related]
5. A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers. Shang S; Du C; Liu Y; Liu M; Wang X; Gao W; Zou Y; Dong J; Liu Y; Chen J Nat Commun; 2022 Dec; 13(1):7599. PubMed ID: 36494377 [TBL] [Abstract][Full Text] [Related]
6. Rational Construction of Electrically Conductive Covalent Organic Frameworks through Encapsulating Fullerene via Donor-Acceptor Interaction. Xu X; Yue Y; Xin G; Huang N Macromol Rapid Commun; 2023 Jun; 44(11):e2200715. PubMed ID: 36333909 [TBL] [Abstract][Full Text] [Related]
7. Conductive Covalent Organic Frameworks with Conductivity- and Pre-Reduction-Enhanced Electrochemiluminescence for Ultrasensitive Biosensor Construction. Zhang JL; Yao LY; Yang Y; Liang WB; Yuan R; Xiao DR Anal Chem; 2022 Mar; 94(8):3685-3692. PubMed ID: 35156809 [TBL] [Abstract][Full Text] [Related]
8. Lowering Band Gap of an Electroactive Metal-Organic Framework via Complementary Guest Intercalation. Guo Z; Panda DK; Gordillo MA; Khatun A; Wu H; Zhou W; Saha S ACS Appl Mater Interfaces; 2017 Sep; 9(38):32413-32417. PubMed ID: 28872818 [TBL] [Abstract][Full Text] [Related]
9. Efficient and tunable one-dimensional charge transport in layered lanthanide metal-organic frameworks. Skorupskii G; Trump BA; Kasel TW; Brown CM; Hendon CH; Dincă M Nat Chem; 2020 Feb; 12(2):131-136. PubMed ID: 31767997 [TBL] [Abstract][Full Text] [Related]
10. The Advent of Electrically Conducting Double-Helical Metal-Organic Frameworks Featuring Butterfly-Shaped Electron-Rich π-Extended Tetrathiafulvalene Ligands. Gordillo MA; Benavides PA; Panda DK; Saha S ACS Appl Mater Interfaces; 2020 Mar; 12(11):12955-12961. PubMed ID: 31909971 [TBL] [Abstract][Full Text] [Related]
11. Superior Charge Transport in Ni-Diamine Conductive MOFs. Wang J; Chen T; Jeon M; Oppenheim JJ; Tan B; Kim J; Dincă M J Am Chem Soc; 2024 Jul; 146(29):20500-20507. PubMed ID: 39007301 [TBL] [Abstract][Full Text] [Related]
12. Conjugated Metal-Organic Macrocycles: Synthesis, Characterization, and Electrical Conductivity. Zasada LB; Guio L; Kamin AA; Dhakal D; Monahan M; Seidler GT; Luscombe CK; Xiao DJ J Am Chem Soc; 2022 Mar; 144(10):4515-4521. PubMed ID: 35255217 [TBL] [Abstract][Full Text] [Related]
13. Computational Prediction of Stacking Mode in Conductive Two-Dimensional Metal-Organic Frameworks: An Exploration of Chemical and Electrical Property Changes. Jeon M; Kim M; Lee JS; Kim H; Choi SJ; Moon HR; Kim J ACS Sens; 2023 Aug; 8(8):3068-3075. PubMed ID: 37524053 [TBL] [Abstract][Full Text] [Related]
14. Near IR Bandgap Semiconducting 2D Conjugated Metal-Organic Framework with Rhombic Lattice and High Mobility. Sporrer L; Zhou G; Wang M; Balos V; Revuelta S; Jastrzembski K; Löffler M; Petkov P; Heine T; Kuc A; Cánovas E; Huang Z; Feng X; Dong R Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202300186. PubMed ID: 36862366 [TBL] [Abstract][Full Text] [Related]
15. Electrical conductivity through π-π stacking in a two-dimensional porous gallium catecholate metal-organic framework. Skorupskii G; Chanteux G; Le KN; Stassen I; Hendon CH; Dincă M Ann N Y Acad Sci; 2022 Dec; 1518(1):226-230. PubMed ID: 36183322 [TBL] [Abstract][Full Text] [Related]
16. Acid-Dependent Charge Transport in a Solution-Processed 2D Conductive Metal-Organic Framework. Park G; Demuth MC; Hendon CH; Park SS J Am Chem Soc; 2024 Apr; ():. PubMed ID: 38603596 [TBL] [Abstract][Full Text] [Related]
17. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. Campbell MG; Sheberla D; Liu SF; Swager TM; Dincă M Angew Chem Int Ed Engl; 2015 Mar; 54(14):4349-52. PubMed ID: 25678397 [TBL] [Abstract][Full Text] [Related]
18. A New Electrically Conducting Metal-Organic Framework Featuring U-Shaped Gordillo MA; Benavides PA; Spalding K; Saha S Front Chem; 2021; 9():726544. PubMed ID: 34660528 [TBL] [Abstract][Full Text] [Related]
19. Dense Conductive Metal-Organic Frameworks as Robust Electrocatalysts for Biosensing. Niu K; Sun P; Chen J; Lu X Anal Chem; 2022 Dec; 94(49):17177-17185. PubMed ID: 36454682 [TBL] [Abstract][Full Text] [Related]
20. Large Single Crystals of Two-Dimensional π-Conjugated Metal-Organic Frameworks via Biphasic Solution-Solid Growth. Ha DG; Rezaee M; Han Y; Siddiqui SA; Day RW; Xie LS; Modtland BJ; Muller DA; Kong J; Kim P; Dincă M; Baldo MA ACS Cent Sci; 2021 Jan; 7(1):104-109. PubMed ID: 33532573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]