BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 37018467)

  • 1. Direct Lineage Reprogramming for Induced Keratinocyte Stem Cells: A Potential Approach for Skin Repair.
    Lin H; Pan Y; Cai S
    Stem Cells Transl Med; 2023 May; 12(5):245-257. PubMed ID: 37018467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of keratinocyte stem-like cells from human fibroblasts via a direct reprogramming approach.
    Zhao A; Yang Y; Pan X; Pan Y; Cai S
    Biotechnol Prog; 2020 May; 36(3):e2961. PubMed ID: 31930712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications.
    Sadahiro T; Yamanaka S; Ieda M
    Circ Res; 2015 Apr; 116(8):1378-91. PubMed ID: 25858064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Keratinocyte stem cells are more resistant to UVA radiation than their direct progeny.
    Metral E; Bechetoille N; Demarne F; Damour O; Rachidi W
    PLoS One; 2018; 13(9):e0203863. PubMed ID: 30208100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Insight into Reprogramming Barriers to iPSC Generation.
    Haridhasapavalan KK; Raina K; Dey C; Adhikari P; Thummer RP
    Stem Cell Rev Rep; 2020 Feb; 16(1):56-81. PubMed ID: 31758374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factor-mediated reprogramming: epigenetics and therapeutic potential.
    Firas J; Liu X; Lim SM; Polo JM
    Immunol Cell Biol; 2015 Mar; 93(3):284-9. PubMed ID: 25643615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprogramming human adipose tissue stem cells using epidermal keratinocyte extracts.
    Xie F; Tang X; Zhang Q; Deng C
    Mol Med Rep; 2015 Jan; 11(1):182-8. PubMed ID: 25333210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct lineage reprogramming: strategies, mechanisms, and applications.
    Xu J; Du Y; Deng H
    Cell Stem Cell; 2015 Feb; 16(2):119-34. PubMed ID: 25658369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.
    van den Hurk M; Kenis G; Bardy C; van den Hove DL; Gage FH; Steinbusch HW; Rutten BP
    Epigenomics; 2016 Aug; 8(8):1131-49. PubMed ID: 27419933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct reprogramming of mouse fibroblasts into cardiac myocytes.
    Inagawa K; Ieda M
    J Cardiovasc Transl Res; 2013 Feb; 6(1):37-45. PubMed ID: 23054660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in understanding reprogramming to the induced pluripotent state.
    Plath K; Lowry WE
    Nat Rev Genet; 2011 Apr; 12(4):253-65. PubMed ID: 21415849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.
    Biswas D; Jiang P
    Int J Mol Sci; 2016 Feb; 17(2):226. PubMed ID: 26861316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the roadmaps to induced pluripotency.
    Liu K; Song Y; Yu H; Zhao T
    Cell Death Dis; 2014 May; 5(5):e1232. PubMed ID: 24832604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pluripotent reprogramming and lineage reprogramming: promises and challenges in cardiovascular regeneration.
    He WJ; Hou Q; Han QW; Han WD; Fu XB
    Tissue Eng Part B Rev; 2014 Aug; 20(4):304-13. PubMed ID: 24063625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving Cell Fate Decisions during Somatic Cell Reprogramming by Single-Cell RNA-Seq.
    Guo L; Lin L; Wang X; Gao M; Cao S; Mai Y; Wu F; Kuang J; Liu H; Yang J; Chu S; Song H; Li D; Liu Y; Wu K; Liu J; Wang J; Pan G; Hutchins AP; Liu J; Pei D; Chen J
    Mol Cell; 2019 Feb; 73(4):815-829.e7. PubMed ID: 30772174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in the reprogramming of somatic cells.
    Ma T; Xie M; Laurent T; Ding S
    Circ Res; 2013 Feb; 112(3):562-74. PubMed ID: 23371904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors.
    Park TS; Huo JS; Peters A; Talbot CC; Verma K; Zimmerlin L; Kaplan IM; Zambidis ET
    PLoS One; 2012; 7(8):e42838. PubMed ID: 22905176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GATA family members as inducers for cellular reprogramming to pluripotency.
    Shu J; Zhang K; Zhang M; Yao A; Shao S; Du F; Yang C; Chen W; Wu C; Yang W; Sun Y; Deng H
    Cell Res; 2015 Feb; 25(2):169-80. PubMed ID: 25591928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of Reprogramming Factors Alters the Trajectory of Somatic Lineage Conversion.
    Velychko S; Kang K; Kim SM; Kwak TH; Kim KP; Park C; Hong K; Chung C; Hyun JK; MacCarthy CM; Wu G; Schöler HR; Han DW
    Cell Rep; 2019 Apr; 27(1):30-39.e4. PubMed ID: 30943410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Marker Expression between Keratinocyte Stem Cells and Their Progeny Generated from a Single Colony.
    Ali D; Alhattab D; Jafar H; Alzubide M; Sharar N; Bdour S; Awidi A
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.