These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37018490)

  • 21. Chembio extraction on a chip by nanoliter droplet ejection.
    Yu H; Kwon JW; Kim ES
    Lab Chip; 2005 Mar; 5(3):344-9. PubMed ID: 15726211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling fast acoustic streaming: Steady-state and transient flow solutions.
    Orosco J; Friend J
    Phys Rev E; 2022 Oct; 106(4-2):045101. PubMed ID: 36397528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theory of pressure acoustics with viscous boundary layers and streaming in curved elastic cavities.
    Bach JS; Bruus H
    J Acoust Soc Am; 2018 Aug; 144(2):766. PubMed ID: 30180663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices.
    Lei J; Glynne-Jones P; Hill M
    Microfluid Nanofluidics; 2017; 21(2):23. PubMed ID: 32226356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulation of cancer cells in a sessile droplet
    Nam H; Sung HJ; Park J; Jeon JS
    Lab Chip; 2021 Dec; 22(1):47-56. PubMed ID: 34821225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition from Boundary-Driven to Bulk-Driven Acoustic Streaming Due to Nonlinear Thermoviscous Effects at High Acoustic Energy Densities.
    Joergensen JH; Qiu W; Bruus H
    Phys Rev Lett; 2023 Jan; 130(4):044001. PubMed ID: 36763435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow profiling of a surface-acoustic-wave nanopump.
    Guttenberg Z; Rathgeber A; Keller S; Rädler JO; Wixforth A; Kostur M; Schindler M; Talkner P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056311. PubMed ID: 15600757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices.
    Zhu H; Zhang P; Zhong Z; Xia J; Rich J; Mai J; Su X; Tian Z; Bachman H; Rufo J; Gu Y; Kang P; Chakrabarty K; Witelski TP; Huang TJ
    Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustofluidic enzyme-linked immunosorbent assay (ELISA) platform enabled by coupled acoustic streaming.
    Li X; Huffman J; Ranganathan N; He Z; Li P
    Anal Chim Acta; 2019 Nov; 1079():129-138. PubMed ID: 31387703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic streaming of a sharp edge.
    Ovchinnikov M; Zhou J; Yalamanchili S
    J Acoust Soc Am; 2014 Jul; 136(1):22-9. PubMed ID: 24993192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic Streaming in a Soft Tissue Microenvironment.
    El Ghamrawy A; de Comtes F; Koruk H; Mohammed A; Jones JR; Choi JJ
    Ultrasound Med Biol; 2019 Jan; 45(1):208-217. PubMed ID: 30336964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acoustic streaming in a rotating fluid.
    Whitworth G
    J Acoust Soc Am; 1990 Oct; 88(4):1960-3. PubMed ID: 2262637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets.
    Peng T; Li L; Zhou M; Jiang F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.
    Daru V; Reyt I; Bailliet H; Weisman C; Baltean-Carlès D
    J Acoust Soc Am; 2017 Jan; 141(1):563. PubMed ID: 28147596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative investigation of acoustic streaming in blood.
    Shi X; Martin RW; Vaezy S; Crum LA
    J Acoust Soc Am; 2002 Feb; 111(2):1110-21. PubMed ID: 11863167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A numerical study of the coupling between Rayleigh streaming and heat transfer at high acoustic level.
    Daru V; Weisman C; Baltean-Carlès D; Bailliet H
    J Acoust Soc Am; 2021 Dec; 150(6):4501. PubMed ID: 34972296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in sessile droplets.
    Alghane M; Chen BX; Fu YQ; Li Y; Desmulliez MP; Mohammed MI; Walton AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056304. PubMed ID: 23214873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical Simulation of Boundary-Driven Acoustic Streaming in Microfluidic Channels with Circular Cross-Sections.
    Lei J; Cheng F; Li K
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32111024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.