These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37018609)

  • 1. A Transfer Learning based Cross-subject Generic Model for Continuous Estimation of Finger Joint Angles from a New User.
    Long Y; Geng Y; Dai C; Li G
    IEEE J Biomed Health Inform; 2023 Jan; PP():. PubMed ID: 37018609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rotary transformer cross-subject model for continuous estimation of finger joints kinematics and a transfer learning approach for new subjects.
    Lin C; He Z
    Front Neurosci; 2024; 18():1306050. PubMed ID: 38572147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long exposure convolutional memory network for accurate estimation of finger kinematics from surface electromyographic signals.
    Guo W; Ma C; Wang Z; Zhang H; Farina D; Jiang N; Lin C
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326941
    [No Abstract]   [Full Text] [Related]  

  • 4. An Attention-based Bidirectional LSTM Model for Continuous Cross-Subject Estimation of Knee Joint Angle during Running from sEMG Signals.
    Zangene AR; Williams Samuel O; Abbasi A; Nazarpour K; McEwan AA; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach.
    Song Q; Ma X; Liu Y
    Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion inception and transformer network for continuous estimation of finger kinematics from surface electromyography.
    Lin C; Zhang X
    Front Neurorobot; 2024; 18():1305605. PubMed ID: 38765870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep transfer learning compared to subject-specific models for sEMG decoders.
    Lehmler SJ; Saif-Ur-Rehman M; Tobias G; Iossifidis I
    J Neural Eng; 2022 Oct; 19(5):. PubMed ID: 36206722
    [No Abstract]   [Full Text] [Related]  

  • 8. A BERT Based Method for Continuous Estimation of Cross-Subject Hand Kinematics From Surface Electromyographic Signals.
    Lin C; Chen X; Guo W; Jiang N; Farina D; Su J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():87-96. PubMed ID: 36269909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.
    Ngeo JG; Tamei T; Shibata T
    J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble Learning Method for the Continuous Decoding of Hand Joint Angles.
    Wang H; Tao Q; Zhang X
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Joint Angle From sEMG and Inertial Measurements Based on Deep Learning Approach.
    Delgado AL; Da Rocha AF; Leon AS; Ruiz-Olaya A; Montero KR; Delis AL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():700-703. PubMed ID: 34891388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-source domain generalization and adaptation toward cross-subject myoelectric pattern recognition.
    Zhang X; Wu L; Zhang X; Chen X; Li C; Chen X
    J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36720167
    [No Abstract]   [Full Text] [Related]  

  • 14. Continuous estimation of finger joint angles using muscle activation inputs from surface EMG signals.
    Ngeo J; Tamei T; Shibata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2756-9. PubMed ID: 23366496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Estimation of Knee Joint Angle Based on Surface Electromyography Using a Long Short-Term Memory Neural Network and Time-Advanced Feature.
    Ma X; Liu Y; Song Q; Wang C
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower-Limb Joint Torque Prediction Using LSTM Neural Networks and Transfer Learning.
    Zhang L; Soselia D; Wang R; Gutierrez-Farewik EM
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():600-609. PubMed ID: 35239487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Estimation of Human Joint Angles From sEMG Using a Multi-Feature Temporal Convolutional Attention-Based Network.
    Wang S; Tang H; Gao L; Tan Q
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5461-5472. PubMed ID: 35969552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks.
    Zangene AR; Abbasi A; Nazarpour K
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-Subject Lifelong Learning for Continuous Estimation From Surface Electromyographic Signal.
    Chen X; Guo W; Lin C; Jiang N; Su J
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1965-1973. PubMed ID: 38739518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Joint Angles Estimation of Forearm Motion Using a Regression Model.
    Qin Z; Stapornchaisit S; He Z; Yoshimura N; Koike Y
    Front Neurorobot; 2021; 15():685961. PubMed ID: 34408635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.