BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 3701863)

  • 41. Representative and efficient cloning of satellite DNAs based on PFGE pre-fractionation of restriction digests of genomic DNA.
    Burgtorf C; Bünemann H
    J Biochem Biophys Methods; 1994 Jun; 28(4):301-12. PubMed ID: 7963251
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequence arrangement of a highly methylated satellite DNA of a plant, Scilla: A tandemly repeated inverted repeat.
    Deumling B
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):338-42. PubMed ID: 16592953
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Composition and chromosomal localization of cetacean highly repetitive DNA with special reference to the blue whale, Balaenoptera musculus.
    Arnason U; Widegren B
    Chromosoma; 1989 Nov; 98(5):323-9. PubMed ID: 2612291
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deca-satellite: a highly polymorphic satellite that joins alpha-satellite in the African green monkey genome.
    Maresca A; Singer MF
    J Mol Biol; 1983 Mar; 164(4):493-511. PubMed ID: 6302277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contiguous arrays of satellites 1, 3, and beta form a 1.5-Mb domain on chromosome 22p.
    Shiels C; Coutelle C; Huxley C
    Genomics; 1997 Aug; 44(1):35-44. PubMed ID: 9286698
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Satellite DNA from Xenopus laevis: comparative analysis of 745 and 1037 base pair Hind III tandem repeats.
    Meyerhof W; Tappeser B; Korge E; Knöchel W
    Nucleic Acids Res; 1983 Oct; 11(20):6997-7009. PubMed ID: 6314270
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Divergence of repetitive DNA sequences in the heterochromatin of medaka fishes: Molecular cytogenetic characterization of constitutive heterochromatin in two medaka species: Oryzias hubbsi and O. celebensis (Adrianichthyidae, Beloniformes).
    Uno Y; Asada Y; Nishida C; Takehana Y; Sakaizumi M; Matsuda Y
    Cytogenet Genome Res; 2013; 141(2-3):212-26. PubMed ID: 24028862
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a complex satellite DNA in the mollusc Donax trunculus: analysis of sequence variations and divergence.
    Plohl M; Cornudella L
    Gene; 1996 Mar; 169(2):157-64. PubMed ID: 8647440
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome.
    Waye JS; Willard HF
    Nucleic Acids Res; 1985 Apr; 13(8):2731-43. PubMed ID: 2987865
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative analysis of three guinea pig satellite DNA's by restriction nucleases.
    Altenburger W; Hörz W; Zachau HG
    Eur J Biochem; 1977 Mar; 73(2):393-400. PubMed ID: 403072
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of calf-thymus satellite DNA: evidence for specific methylation of cytosine in C-G sequences.
    Gautier F; Bünemann H; Grotjahn L
    Eur J Biochem; 1977 Oct; 80(1):175-83. PubMed ID: 562751
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of a satellite DNA from Antilocapra americana.
    Denome RM; O'Callaghan B; Luitjens C; Harper E; Bianco R
    Gene; 1994 Aug; 145(2):257-9. PubMed ID: 8056340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Satellite DNA junctions identify the potential origin of new repetitive elements in the beetle Tribolium madens.
    Mravinac B; Plohl M
    Gene; 2007 Jun; 394(1-2):45-52. PubMed ID: 17379457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new AluI satellite DNA in the root-knot nematode Meloidogyne fallax: relationships with satellites from the sympatric species M. hapla and M. chitwoodi.
    Castagnone-Sereno P; Semblat JP; Leroy F; Abad P
    Mol Biol Evol; 1998 Sep; 15(9):1115-22. PubMed ID: 9729876
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nucleotide sequence of mouse satellite DNA.
    Hörz W; Altenburger W
    Nucleic Acids Res; 1981 Feb; 9(3):683-96. PubMed ID: 6261227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conserved patterns in the evolution of Tribolium satellite DNAs.
    Mravinac B; Plohl M; Ugarković D
    Gene; 2004 May; 332():169-77. PubMed ID: 15145066
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Organization of a repetitive human 1.8 kb KpnI sequence localized in the heterochromatin of chromosome 15.
    Higgins MJ; Wang HS; Shtromas I; Haliotis T; Roder JC; Holden JJ; White BN
    Chromosoma; 1985; 93(1):77-86. PubMed ID: 2998709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High evolutionary turnover of satellite families in Caenorhabditis.
    Subirana JA; Albà MM; Messeguer X
    BMC Evol Biol; 2015 Oct; 15():218. PubMed ID: 26438045
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Restriction enzyme analysis of a highly diverged satellite DNA from Drosophila nasutoides.
    Lee CS
    Chromosoma; 1981; 83(3):367-79. PubMed ID: 6268373
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cloning and characterization of a fish centromeric satellite DNA.
    Garrido-Ramos MA; Jamilena M; Lozano R; Ruiz Rejón C; Ruiz Rejón M
    Cytogenet Cell Genet; 1994; 65(4):233-7. PubMed ID: 8258296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.