These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37018635)

  • 1. A Generalized Zero-Shot Learning Scheme for SSVEP-Based BCI System.
    Wang X; Liu A; Wu L; Li C; Liu Y; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2023 Jan; PP():. PubMed ID: 37018635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Generalized Zero-Shot Learning SSVEP Classification Performance From Data-Efficient Perspective.
    Wang X; Liu A; Wu L; Guan L; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4135-4145. PubMed ID: 37824324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 4. Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI.
    Li P; Su J; Belkacem AN; Cheng L; Chen C
    Front Neurosci; 2022; 16():971039. PubMed ID: 35958998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing user-dependent and user-independent training of CNN for SSVEP BCI.
    Ravi A; Beni NH; Manuel J; Jiang N
    J Neural Eng; 2020 Apr; 17(2):026028. PubMed ID: 31923910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel hybrid visual stimuli incorporating periodic motions into conventional flickering or pattern-reversal visual stimuli for steady-state visual evoked potential-based brain-computer interfaces.
    Kwon J; Hwang J; Nam H; Im CH
    Front Neuroinform; 2022; 16():997068. PubMed ID: 36213545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine.
    Yeh CL; Lee PL; Chen WM; Chang CY; Wu YT; Lan GY
    Biomed Eng Online; 2013 May; 12():46. PubMed ID: 23692974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Zero-Padding Frequency Domain Convolutional Neural Network for SSVEP Classification.
    Gao D; Zheng W; Wang M; Wang L; Xiao Y; Zhang Y
    Front Hum Neurosci; 2022; 16():815163. PubMed ID: 35370578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision.
    Zhao X; Wang Z; Zhang M; Hu H
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33784640
    [No Abstract]   [Full Text] [Related]  

  • 11. Facilitating Applications of SSVEP-Based BCIs by Within-Subject Information Transfer.
    Liu X; Liu B; Dong G; Gao X; Wang Y
    Front Neurosci; 2022; 16():863359. PubMed ID: 35720721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of SSVEP-EEG signals using CNN and Red Fox Optimization for BCI applications.
    Bhuvaneshwari M; Grace Mary Kanaga E; George ST
    Proc Inst Mech Eng H; 2023 Jan; 237(1):134-143. PubMed ID: 36398685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter- and Intra-subject Template-Based Multivariate Synchronization Index Using an Adaptive Threshold for SSVEP-Based BCIs.
    Wang H; Sun Y; Li Y; Chen S; Zhou W
    Front Neurosci; 2020; 14():717. PubMed ID: 33013279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CNN-based multi-target fast classification method for AR-SSVEP.
    Zhao X; Du Y; Zhang R
    Comput Biol Med; 2022 Feb; 141():105042. PubMed ID: 34802710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI.
    Yang C; Yan X; Wang Y; Chen Y; Zhang H; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34237711
    [No Abstract]   [Full Text] [Related]  

  • 17. Enhancing performance of SSVEP-based BCI by unsupervised learning information from test trials
    Wang L; Xu M; Mei J; Han J; Wang Y; Jung TP; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3359-3362. PubMed ID: 33018724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-subject spatial filter transfer method for SSVEP-EEG feature recognition.
    Yan W; Wu Y; Du C; Xu G
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35483331
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.