These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The Discriminative Kalman Filter for Bayesian Filtering with Nonlinear and Nongaussian Observation Models. Burkhart MC; Brandman DM; Franco B; Hochberg LR; Harrison MT Neural Comput; 2020 May; 32(5):969-1017. PubMed ID: 32187000 [TBL] [Abstract][Full Text] [Related]
23. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations. Zhang L J Inequal Appl; 2017; 2017(1):249. PubMed ID: 29070932 [TBL] [Abstract][Full Text] [Related]
24. Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm. Overgaard RV; Jonsson N; Tornøe CW; Madsen H J Pharmacokinet Pharmacodyn; 2005 Feb; 32(1):85-107. PubMed ID: 16175312 [TBL] [Abstract][Full Text] [Related]
25. Adaptive Learning Algorithm Convergence in Passive and Reactive Environments. Golden RM Neural Comput; 2018 Oct; 30(10):2805-2832. PubMed ID: 30021080 [TBL] [Abstract][Full Text] [Related]
26. Deep learning for Koopman Operator Optimal Control. Al-Gabalawy M ISA Trans; 2021 Jan; ():. PubMed ID: 33431116 [TBL] [Abstract][Full Text] [Related]
27. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations. Tornøe CW; Overgaard RV; Agersø H; Nielsen HA; Madsen H; Jonsson EN Pharm Res; 2005 Aug; 22(8):1247-58. PubMed ID: 16078134 [TBL] [Abstract][Full Text] [Related]
28. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning. Elfwing S; Uchibe E; Doya K Neural Netw; 2016 Dec; 84():17-27. PubMed ID: 27639720 [TBL] [Abstract][Full Text] [Related]
29. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements. Durstewitz D PLoS Comput Biol; 2017 Jun; 13(6):e1005542. PubMed ID: 28574992 [TBL] [Abstract][Full Text] [Related]
30. A Kalman Filter for Multilinear Forms and Its Connection with Tensorial Adaptive Filters. Dogariu LM; Paleologu C; Benesty J; Stanciu CL; Oprea CC; Ciochină S Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065314 [TBL] [Abstract][Full Text] [Related]
31. Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization. Lejarza F; Baldea M Sci Rep; 2022 Jul; 12(1):11836. PubMed ID: 35821394 [TBL] [Abstract][Full Text] [Related]
32. Nonlinear function-on-scalar regression via functional universal approximation. Luo R; Qi X Biometrics; 2023 Dec; 79(4):3319-3331. PubMed ID: 36799710 [TBL] [Abstract][Full Text] [Related]
33. Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems. Elanayar V T SS; Shin YC IEEE Trans Neural Netw; 1994; 5(4):594-603. PubMed ID: 18267832 [TBL] [Abstract][Full Text] [Related]
35. Learning effective stochastic differential equations from microscopic simulations: Linking stochastic numerics to deep learning. Dietrich F; Makeev A; Kevrekidis G; Evangelou N; Bertalan T; Reich S; Kevrekidis IG Chaos; 2023 Feb; 33(2):023121. PubMed ID: 36859209 [TBL] [Abstract][Full Text] [Related]
36. Modeling of nonlinear biological phenomena modeled by S-systems. Mansouri MM; Nounou HN; Nounou MN; Datta AA Math Biosci; 2014 Mar; 249():75-91. PubMed ID: 24524881 [TBL] [Abstract][Full Text] [Related]
37. Learning effective dynamics from data-driven stochastic systems. Feng L; Gao T; Dai M; Duan J Chaos; 2023 Apr; 33(4):. PubMed ID: 37097942 [TBL] [Abstract][Full Text] [Related]
38. RKHS Bayes discriminant: a subspace constrained nonlinear feature projection for signal detection. Ozertem U; Erdogmus D IEEE Trans Neural Netw; 2009 Jul; 20(7):1195-203. PubMed ID: 19497813 [TBL] [Abstract][Full Text] [Related]
39. Predictive performance for population models using stochastic differential equations applied on data from an oral glucose tolerance test. Møller JB; Overgaard RV; Madsen H; Hansen T; Pedersen O; Ingwersen SH J Pharmacokinet Pharmacodyn; 2010 Feb; 37(1):85-98. PubMed ID: 20013304 [TBL] [Abstract][Full Text] [Related]
40. SPReM: Sparse Projection Regression Model For High-dimensional Linear Regression. Sun Q; Zhu H; Liu Y; Ibrahim JG; J Am Stat Assoc; 2015; 110(509):289-302. PubMed ID: 26527844 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]