These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37018713)

  • 1. A Novel Framework to Facilitate User Preferred Tuning for a Robotic Knee Prosthesis.
    Alili A; Nalam V; Li M; Liu M; Feng J; Si J; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2023 Jan; PP():. PubMed ID: 37018713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Optimization for Control of Robotic Knee Prostheses Toward Improved Symmetry of Propulsive Impulse.
    Li M; Liu W; Si J; Stallrich JW; Huang H
    IEEE Trans Biomed Eng; 2023 May; 70(5):1634-1642. PubMed ID: 36417736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-prosthesis cooperation: combining adaptive prosthesis control with visual feedback guided gait.
    Fylstra BL; Lee IC; Li M; Lewek MD; Huang H
    J Neuroeng Rehabil; 2022 Dec; 19(1):140. PubMed ID: 36517814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online Reinforcement Learning Control for the Personalization of a Robotic Knee Prosthesis.
    Wen Y; Si J; Brandt A; Gao X; Huang HH
    IEEE Trans Cybern; 2020 Jun; 50(6):2346-2356. PubMed ID: 30668514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cyber Expert System for Auto-Tuning Powered Prosthesis Impedance Control Parameters.
    Huang H; Crouch DL; Liu M; Sawicki GS; Wang D
    Ann Biomed Eng; 2016 May; 44(5):1613-24. PubMed ID: 26407703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive control of powered transfemoral prostheses based on adaptive dynamic programming.
    Yue Wen ; Ming Liu ; Si J; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5071-5074. PubMed ID: 28269408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of user preference in the customized control of robotic exoskeletons.
    Ingraham KA; Remy CD; Rouse EJ
    Sci Robot; 2022 Mar; 7(64):eabj3487. PubMed ID: 35353602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial.
    Prinsen EC; Nederhand MJ; Sveinsdóttir HS; Prins MR; van der Meer F; Koopman HFJM; Rietman JS
    Gait Posture; 2017 Jan; 51():254-260. PubMed ID: 27838569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearer-Prosthesis Interaction for Symmetrical Gait: A Study Enabled by Reinforcement Learning Prosthesis Control.
    Wen Y; Li M; Si J; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):904-913. PubMed ID: 32149646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intuitive Clinician Control Interface for a Powered Knee-Ankle Prosthesis: A Case Study.
    Quintero D; Reznick E; Lambert DJ; Rezazadeh S; Gray L; Gregg RD
    IEEE J Transl Eng Health Med; 2018; 6():2600209. PubMed ID: 30546971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adding a toe joint to a prosthesis: walking biomechanics, energetics, and preference of individuals with unilateral below-knee limb loss.
    McDonald KA; Teater RH; Cruz JP; Kerr JT; Bastas G; Zelik KE
    Sci Rep; 2021 Jan; 11(1):1924. PubMed ID: 33479374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Safe Wearer-Prosthesis Interaction: Evaluation of Gait Stability and Human Compensation Strategy Under Faults in Robotic Transfemoral Prostheses.
    Lee IC; Liu M; Lewek MD; Hu X; Filer WG; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2773-2782. PubMed ID: 36136925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey of transfemoral amputee experience and priorities for the user-centered design of powered robotic transfemoral prostheses.
    Fanciullacci C; McKinney Z; Monaco V; Milandri G; Davalli A; Sacchetti R; Laffranchi M; De Michieli L; Baldoni A; Mazzoni A; Paternò L; Rosini E; Reale L; Trecate F; Crea S; Vitiello N; Gruppioni E
    J Neuroeng Rehabil; 2021 Dec; 18(1):168. PubMed ID: 34863213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic versus manual tuning of robot-assisted gait training in people with neurological disorders.
    Fricke SS; Bayón C; der Kooij HV; F van Asseldonk EH
    J Neuroeng Rehabil; 2020 Jan; 17(1):9. PubMed ID: 31992322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Running with a powered knee and ankle prosthesis.
    Shultz AH; Lawson BE; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):403-12. PubMed ID: 25020138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subject-specific responses to an adaptive ankle prosthesis during incline walking.
    Lamers EP; Eveld ME; Zelik KE
    J Biomech; 2019 Oct; 95():109273. PubMed ID: 31431348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prosthetic mass distribution on the spatiotemporal characteristics and knee kinematics of transfemoral amputee locomotion.
    Hekmatfard M; Farahmand F; Ebrahimi I
    Gait Posture; 2013 Jan; 37(1):78-81. PubMed ID: 22832472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of extended powered knee prosthesis stance time via visual feedback on gait symmetry of individuals with unilateral amputation: a preliminary study.
    Brandt A; Riddick W; Stallrich J; Lewek M; Huang HH
    J Neuroeng Rehabil; 2019 Sep; 16(1):112. PubMed ID: 31511010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension.
    Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL
    J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.