These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37018723)

  • 1. Fluid-Structure Interaction Modeling of the Aortic Hemodynamics in Adult Zebrafish: A Pilot Study Based on Synchrotron X-Ray Tomography.
    Van Impe M; Caboor L; Deleeuw V; Olbinado M; De Backer J; Sips P; Segers P
    IEEE Trans Biomed Eng; 2023 Jul; 70(7):2101-2110. PubMed ID: 37018723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated Wall Shear Stress in Aortic Type B Dissection May Relate to Retrograde Aortic Type A Dissection: A Computational Fluid Dynamics Pilot Study.
    Osswald A; Karmonik C; Anderson JR; Rengier F; Karck M; Engelke J; Kallenbach K; Kotelis D; Partovi S; Böckler D; Ruhparwar A
    Eur J Vasc Endovasc Surg; 2017 Sep; 54(3):324-330. PubMed ID: 28716447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of percutaneous aortic valve position on stress map in ascending aorta: A fluid-structure interaction analysis.
    Ibanez I; de Azevedo Gomes BA; Nieckele AO
    Artif Organs; 2021 Jul; 45(7):O195-O206. PubMed ID: 33326639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Impact of a Limited Field-of-View on Computed Hemodynamics in Abdominal Aortic Aneurysms: Evaluating the Feasibility of Completing Ultrasound Segmentations with Parametric Geometries.
    Fonken J; Maas E; Nievergeld A; van Sambeek M; van de Vosse F; Lopata R
    Ann Biomed Eng; 2023 Jun; 51(6):1296-1309. PubMed ID: 36709232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling.
    Chandra S; Raut SS; Jana A; Biederman RW; Doyle M; Muluk SC; Finol EA
    J Biomech Eng; 2013 Aug; 135(8):81001. PubMed ID: 23719760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamics and Wall Shear Stress of Blood Vessels in Aortic Coarctation with Computational Fluid Dynamics Simulation.
    Kim GB; Park KH; Kim SJ
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection.
    Cheng Z; Riga C; Chan J; Hamady M; Wood NB; Cheshire NJ; Xu Y; Gibbs RG
    J Vasc Surg; 2013 Feb; 57(2 Suppl):35S-43S. PubMed ID: 23336853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A parametric model for studying the aorta hemodynamics by means of the computational fluid dynamics.
    Cilla M; Casales M; Peña E; Martínez MA; Malvè M
    J Biomech; 2020 Apr; 103():109691. PubMed ID: 32147240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects.
    Milner JS; Moore JA; Rutt BK; Steinman DA
    J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamics in diabetic human aorta using computational fluid dynamics.
    Shin E; Kim JJ; Lee S; Ko KS; Rhee BD; Han J; Kim N
    PLoS One; 2018; 13(8):e0202671. PubMed ID: 30138473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-Specific CT-Based Fluid-Structure-Interaction Aorta Model to Quantify Mechanical Conditions for the Investigation of Ascending Aortic Dilation in TOF Patients.
    Zuo H; Ling Y; Li P; An Q; Zhou X
    Comput Math Methods Med; 2020; 2020():4568509. PubMed ID: 32849909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations.
    Tse KM; Chiu P; Lee HP; Ho P
    J Biomech; 2011 Mar; 44(5):827-36. PubMed ID: 21256491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific assessment of hemodynamics by computational fluid dynamics in patients with bicuspid aortopathy.
    Kimura N; Nakamura M; Komiya K; Nishi S; Yamaguchi A; Tanaka O; Misawa Y; Adachi H; Kawahito K
    J Thorac Cardiovasc Surg; 2017 Apr; 153(4):S52-S62.e3. PubMed ID: 28190607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer modeling for the prediction of thoracic aortic stent graft collapse.
    Pasta S; Cho JS; Dur O; Pekkan K; Vorp DA
    J Vasc Surg; 2013 May; 57(5):1353-61. PubMed ID: 23313184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Modeling of Blood Flow in Simulated Abdominal Aortic Aneurysm.
    Gonzalez-Urquijo M; de Zamacona RG; Mendoza AKM; Iribarren MZ; Ibarra EG; Bencomo MDM; Fabiani MA
    Vasc Endovascular Surg; 2021 Oct; 55(7):677-683. PubMed ID: 33902355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart.
    Boselli F; Vermot J
    Methods; 2016 Feb; 94():129-34. PubMed ID: 26390811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow analysis of the aortic arch using computational fluid dynamics.
    Numata S; Itatani K; Kanda K; Doi K; Yamazaki S; Morimoto K; Manabe K; Ikemoto K; Yaku H
    Eur J Cardiothorac Surg; 2016 Jun; 49(6):1578-85. PubMed ID: 26792932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease.
    Chandra S; Rajamannan NM; Sucosky P
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1085-96. PubMed ID: 22294208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models.
    Alimohammadi M; Sherwood JM; Karimpour M; Agu O; Balabani S; Díaz-Zuccarini V
    Biomed Eng Online; 2015 Apr; 14():34. PubMed ID: 25881252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.