These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37018728)

  • 1. Remote Blood Oxygen Estimation From Videos Using Neural Networks.
    Mathew J; Tian X; Wong CW; Ho S; Milton DK; Wu M
    IEEE J Biomed Health Inform; 2023 Aug; 27(8):3710-3720. PubMed ID: 37018728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging 3D convolutional neural network and 3D visible-near-infrared multimodal imaging for enhanced contactless oximetry.
    Liao W; Zhang C; Alić B; Wildenauer A; Dietz-Terjung S; Ortiz Sucre JG; Sutharsan S; Schöbel C; Seidl K; Notni G
    J Biomed Opt; 2024 Jun; 29(Suppl 3):S33309. PubMed ID: 39170819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring Oxygen Saturation With Smartphone Cameras Using Convolutional Neural Networks.
    Ding X; Nassehi D; Larson EC
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2603-2610. PubMed ID: 30571649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contactless blood oxygen estimation from face videos: A multi-model fusion method based on deep learning.
    Hu M; Wu X; Wang X; Xing Y; An N; Shi P
    Biomed Signal Process Control; 2023 Mar; 81():104487. PubMed ID: 36530216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innovative approaches in imaging photoplethysmography for remote blood oxygen monitoring.
    Zhu S; Liu S; Jing X; Yang Y; She C
    Sci Rep; 2024 Aug; 14(1):19144. PubMed ID: 39160216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method based on two cameras for accurate estimation of arterial oxygen saturation.
    Liu H; Ivanov K; Wang Y; Wang L
    Biomed Eng Online; 2015 May; 14():52. PubMed ID: 26025439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contactless Blood Oxygen Saturation Estimation from Facial Videos Using Deep Learning.
    Cheng CH; Yuen Z; Chen S; Wong KL; Chin JW; Chan TT; So RHY
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of three new-generation pulse oximeters during motion and low perfusion in volunteers.
    Shah N; Ragaswamy HB; Govindugari K; Estanol L
    J Clin Anesth; 2012 Aug; 24(5):385-91. PubMed ID: 22626683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontact Monitoring of Blood Oxygen Saturation Using Camera and Dual-Wavelength Imaging System.
    Shao D; Liu C; Tsow F; Yang Y; Du Z; Iriya R; Yu H; Tao N
    IEEE Trans Biomed Eng; 2016 Jun; 63(6):1091-8. PubMed ID: 26415199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SmartHeLP: Smartphone-based Hemoglobin Level Prediction Using an Artificial Neural Network.
    Hasan MK; Haque MM; Adib R; Tumpa JF; Begum A; Love RR; Kim YL; Sheikh IA
    AMIA Annu Symp Proc; 2018; 2018():535-544. PubMed ID: 30815094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a new combined transcutaneous measurement of PCO2/pulse oximetry oxygen saturation ear sensor in newborn patients.
    Bernet-Buettiker V; Ugarte MJ; Frey B; Hug MI; Baenziger O; Weiss M
    Pediatrics; 2005 Jan; 115(1):e64-8. PubMed ID: 15601814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pilot study of left tracheal pulse oximetry.
    Brimacombe J; Keller C; Margreiter J
    Anesth Analg; 2000 Oct; 91(4):1003-6. PubMed ID: 11004064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smartphone camera oximetry in an induced hypoxemia study.
    Hoffman JS; Viswanath VK; Tian C; Ding X; Thompson MJ; Larson EC; Patel SN; Wang EJ
    NPJ Digit Med; 2022 Sep; 5(1):146. PubMed ID: 36123367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory Rate Estimation from Thermal Video Data Using Spatio-Temporal Deep Learning.
    Mozafari M; Law AJ; Goubran RA; Green JR
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of peripheral vasoconstriction on pulse oximetry.
    Talke P; Stapelfeldt C
    J Clin Monit Comput; 2006 Oct; 20(5):305-9. PubMed ID: 16841243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Clinical usefulness of new-generation pulse oximetry in the paediatric cardiac surgery setting].
    Cannesson M; Hénaine R; Di Filippo S; Neidecker J; Bompard D; Védrinne C; Lehot JJ
    Ann Fr Anesth Reanim; 2008 Oct; 27(10):808-12. PubMed ID: 18835683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reevaluating reference ranges of oxygen saturation for healthy full-term neonates using pulse oximetry.
    Lu YC; Wang CC; Lee CM; Hwang KS; Hua YM; Yuh YS; Chiu YL; Hsu WF; Chou YL; Huang SW; Lee YJ; Fan HC
    Pediatr Neonatol; 2014 Dec; 55(6):459-65. PubMed ID: 24875236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-Saliency-Enhanced Deep Recurrent Convolutional Networks for Human Fall Detection in E-Healthcare.
    Ge C; Gu IY; Yang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1572-1575. PubMed ID: 30440693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of makeup on remote-PPG monitoring.
    Wang W; Shan C
    Biomed Phys Eng Express; 2020 Mar; 6(3):035004. PubMed ID: 33438649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects.
    Islam MM; Nooruddin S; Karray F; Muhammad G
    Comput Biol Med; 2022 Oct; 149():106060. PubMed ID: 36084382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.