These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37019634)

  • 1. Anatomy and homology of the caudal auricular muscles in greater short-nosed fruit bat (Cynopterus sphinx).
    Chi TC; Meguro F; Takechi M; Furutera T; Tu VT; Higashiyama H; Sohn J; Nojiri T; Kimura J; Koyabu D
    J Vet Med Sci; 2023 May; 85(5):571-577. PubMed ID: 37019634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caudal auricular muscle variations and the evolution of echolocation behavior in pteropodid bats.
    Chi TC; Tu VT; Sohn J; Kimura J; Koyabu D
    J Vet Med Sci; 2023 Jun; 85(6):625-630. PubMed ID: 37121682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryonic evidence uncovers convergent origins of laryngeal echolocation in bats.
    Nojiri T; Wilson LAB; López-Aguirre C; Tu VT; Kuratani S; Ito K; Higashiyama H; Son NT; Fukui D; Sadier A; Sears KE; Endo H; Kamihori S; Koyabu D
    Curr Biol; 2021 Apr; 31(7):1353-1365.e3. PubMed ID: 33675700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musculoskeletal morphogenesis supports the convergent evolution of bat laryngeal echolocation.
    Usui K; Yamamoto T; Khannoon ER; Tokita M
    Proc Biol Sci; 2024 Jan; 291(2015):20232196. PubMed ID: 38290542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Embryonic Development of the Nasal Turbinals and Their Homology in Bats.
    Ito K; Tu VT; Eiting TP; Nojiri T; Koyabu D
    Front Cell Dev Biol; 2021; 9():613545. PubMed ID: 33834019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative inner ear transcriptome analysis between the Rickett's big-footed bats (Myotis ricketti) and the greater short-nosed fruit bats (Cynopterus sphinx).
    Dong D; Lei M; Liu Y; Zhang S
    BMC Genomics; 2013 Dec; 14():916. PubMed ID: 24365273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prenatal development supports a single origin of laryngeal echolocation in bats.
    Wang Z; Zhu T; Xue H; Fang N; Zhang J; Zhang L; Pang J; Teeling EC; Zhang S
    Nat Ecol Evol; 2017 Jan; 1(2):21. PubMed ID: 28812602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement of the larynx and trachea in echolocating and non-echolocating bats.
    Carter RT
    J Anat; 2020 Sep; 237(3):495-503. PubMed ID: 32319086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the hyolaryngeal architecture in horseshoe bats: insights into the evolution of the pulse generation for laryngeal echolocation.
    Nojiri T; Takechi M; Furutera T; Brualla NLM; Iseki S; Fukui D; Tu VT; Meguro F; Koyabu D
    Evodevo; 2024 Feb; 15(1):2. PubMed ID: 38326924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bony connection signals laryngeal echolocation in bats.
    Veselka N; McErlain DD; Holdsworth DW; Eger JL; Chhem RK; Mason MJ; Brain KL; Faure PA; Fenton MB
    Nature; 2010 Feb; 463(7283):939-42. PubMed ID: 20098413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evidence regarding the origin of echolocation and flight in bats.
    Teeling EC; Scally M; Kao DJ; Romagnoli ML; Springer MS; Stanhope MJ
    Nature; 2000 Jan; 403(6766):188-92. PubMed ID: 10646602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation.
    Davies KT; Bates PJ; Maryanto I; Cotton JA; Rossiter SJ
    PLoS One; 2013; 8(4):e61998. PubMed ID: 23637943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal Ganglion Cell Topography and Spatial Resolving Power in Echolocating and Non-Echolocating Bats.
    Cechetto C; de Busserolles F; Jakobsen L; Warrant EJ
    Brain Behav Evol; 2020; 95(2):58-68. PubMed ID: 32818939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of inner ear neuroanatomy of bats and implications for echolocation.
    Sulser RB; Patterson BD; Urban DJ; Neander AI; Luo ZX
    Nature; 2022 Feb; 602(7897):449-454. PubMed ID: 35082447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Click-based echolocation in bats: not so primitive after all.
    Yovel Y; Geva-Sagiv M; Ulanovsky N
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):515-30. PubMed ID: 21465138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation.
    Simmons NB; Seymour KL; Habersetzer J; Gunnell GF
    Nature; 2008 Feb; 451(7180):818-21. PubMed ID: 18270539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prenatal cranial bone development of Thomas's horseshoe bat (Rhinolophus thomasi): with special reference to petrosal morphology.
    Nojiri T; Werneburg I; Son NT; Tu VT; Sasaki T; Maekawa Y; Koyabu D
    J Morphol; 2018 Jun; 279(6):809-827. PubMed ID: 29537107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordinated activities of middle-ear and laryngeal muscles in echolocating bats.
    Jen PH; Suga N
    Science; 1976 Mar; 191(4230):950-2. PubMed ID: 1251206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hearing in large (Eidolon helvum) and small (Cynopterus brachyotis) non-echolocating fruit bats.
    Heffner RS; Koay G; Heffner HE
    Hear Res; 2006 Nov; 221(1-2):17-25. PubMed ID: 16982165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonecholocating fruit bats produce biosonar clicks with their wings.
    Boonman A; Bumrungsri S; Yovel Y
    Curr Biol; 2014 Dec; 24(24):2962-7. PubMed ID: 25484290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.